

A General Framework for Registered Functional Encryption via User-Specific Pre-Constraining

Tapas Pal¹

Robert Schädlich²

December 12, 2025

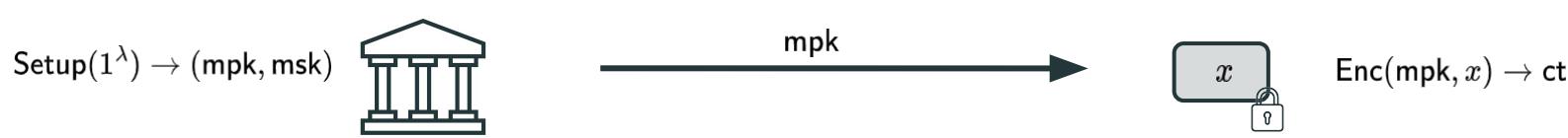
¹ Karlsruhe Institute of Technology, KASTEL Security Research Labs

² DIENS, École normale supérieure, PSL University, CNRS, Inria

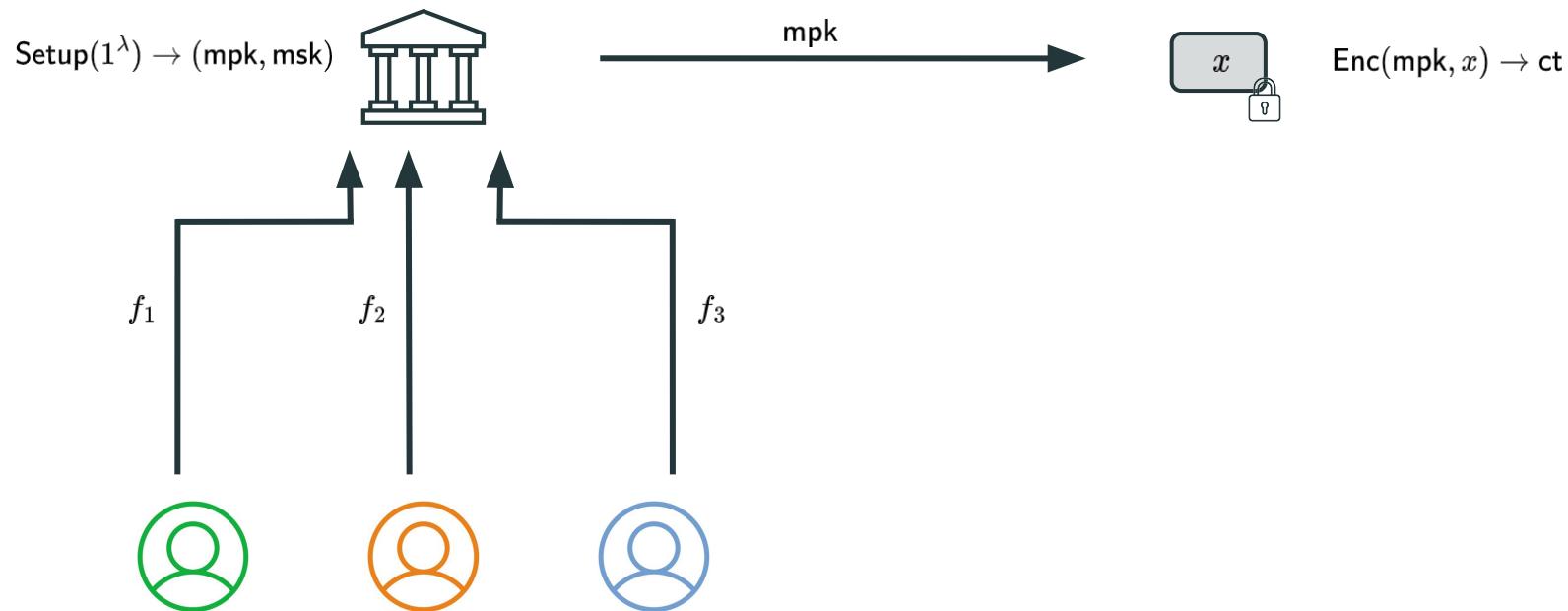
Functional Encryption [TCC:BSW11]

$\text{Setup}(1^\lambda) \rightarrow (\text{mpk}, \text{msk})$

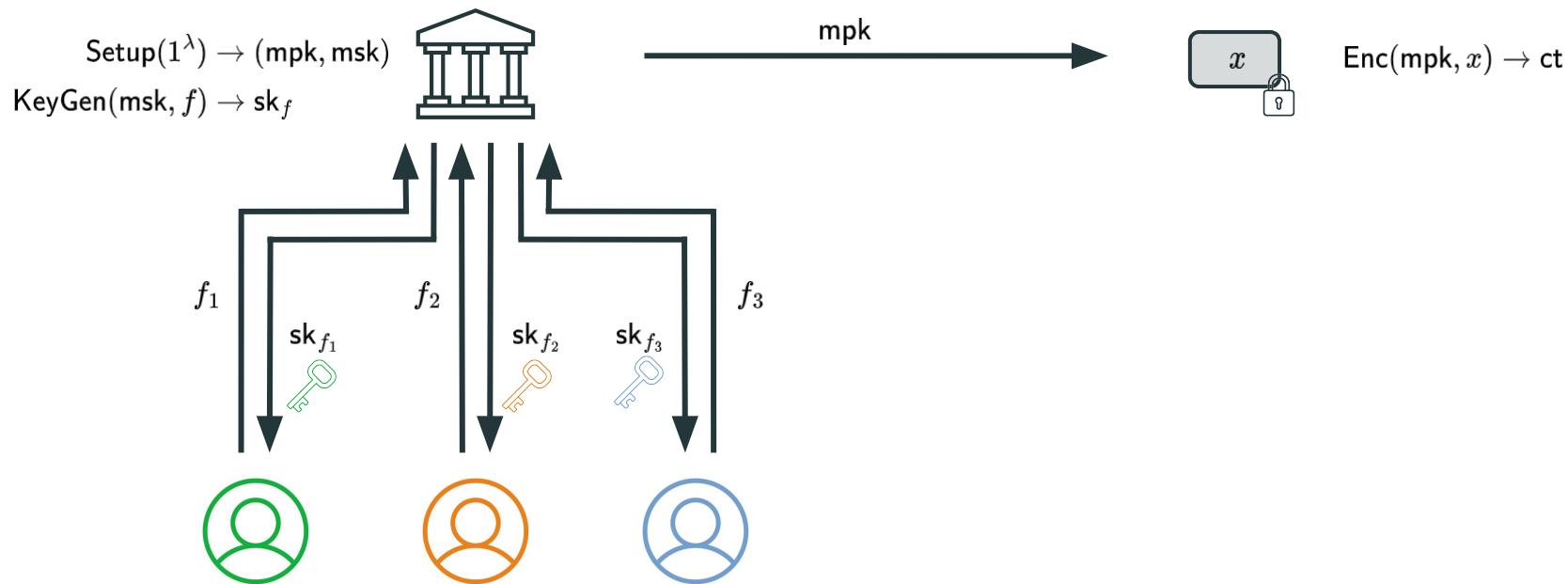
Functional Encryption [TCC:BSW11]



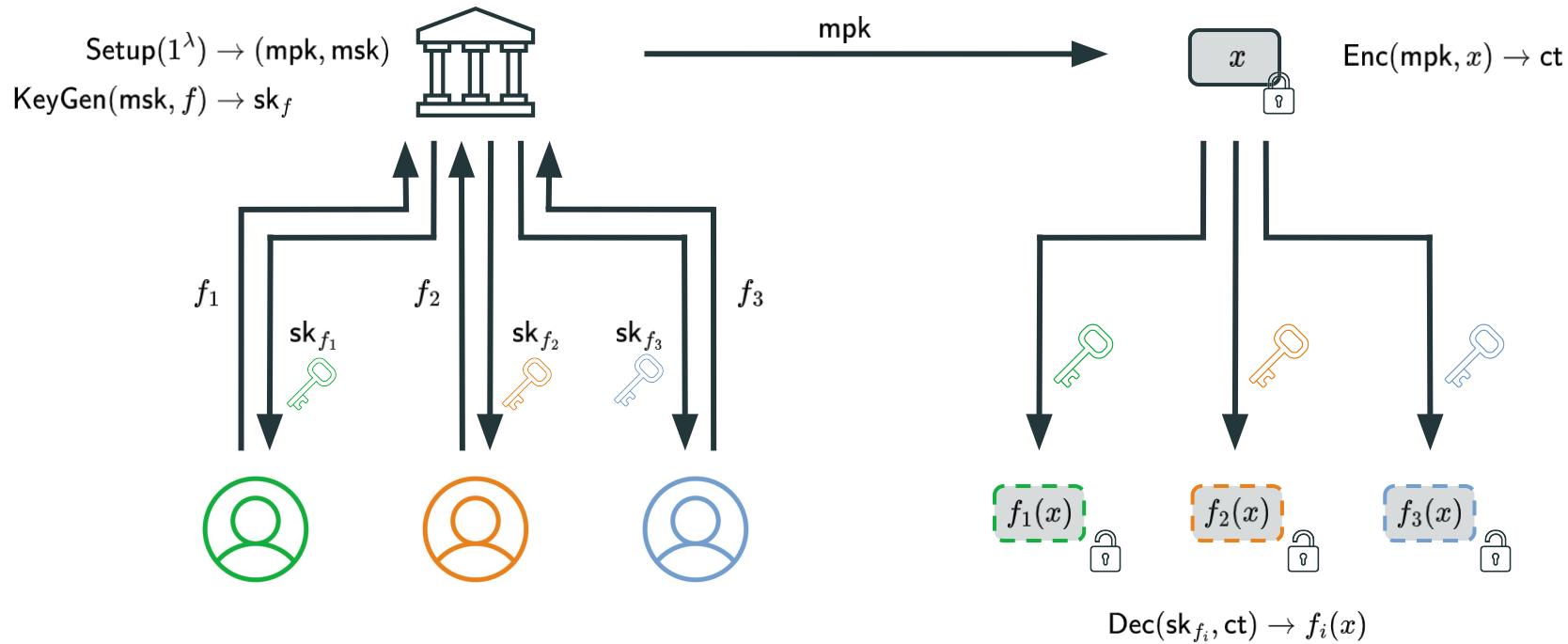
Functional Encryption [TCC:BSW11]



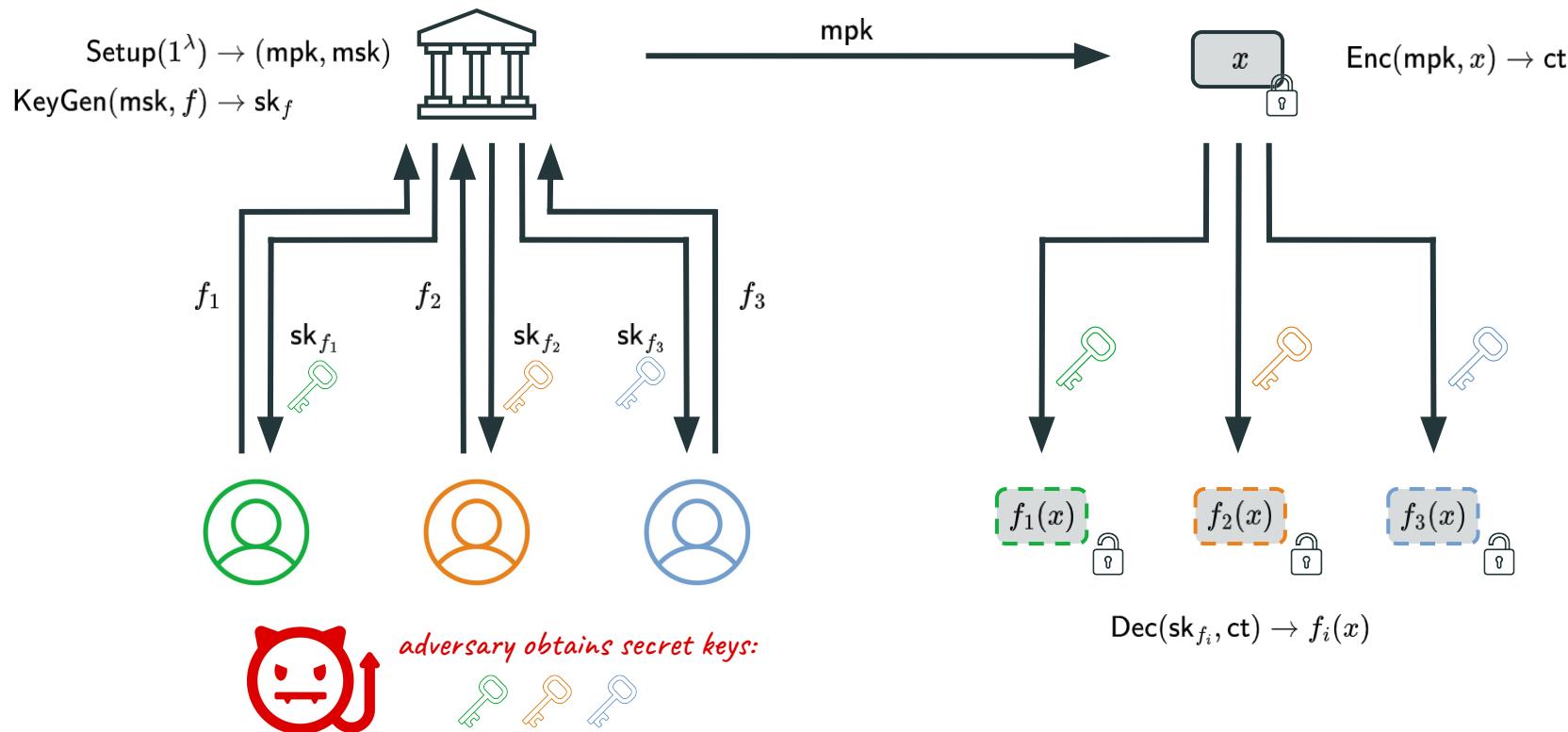
Functional Encryption [TCC:BSW11]



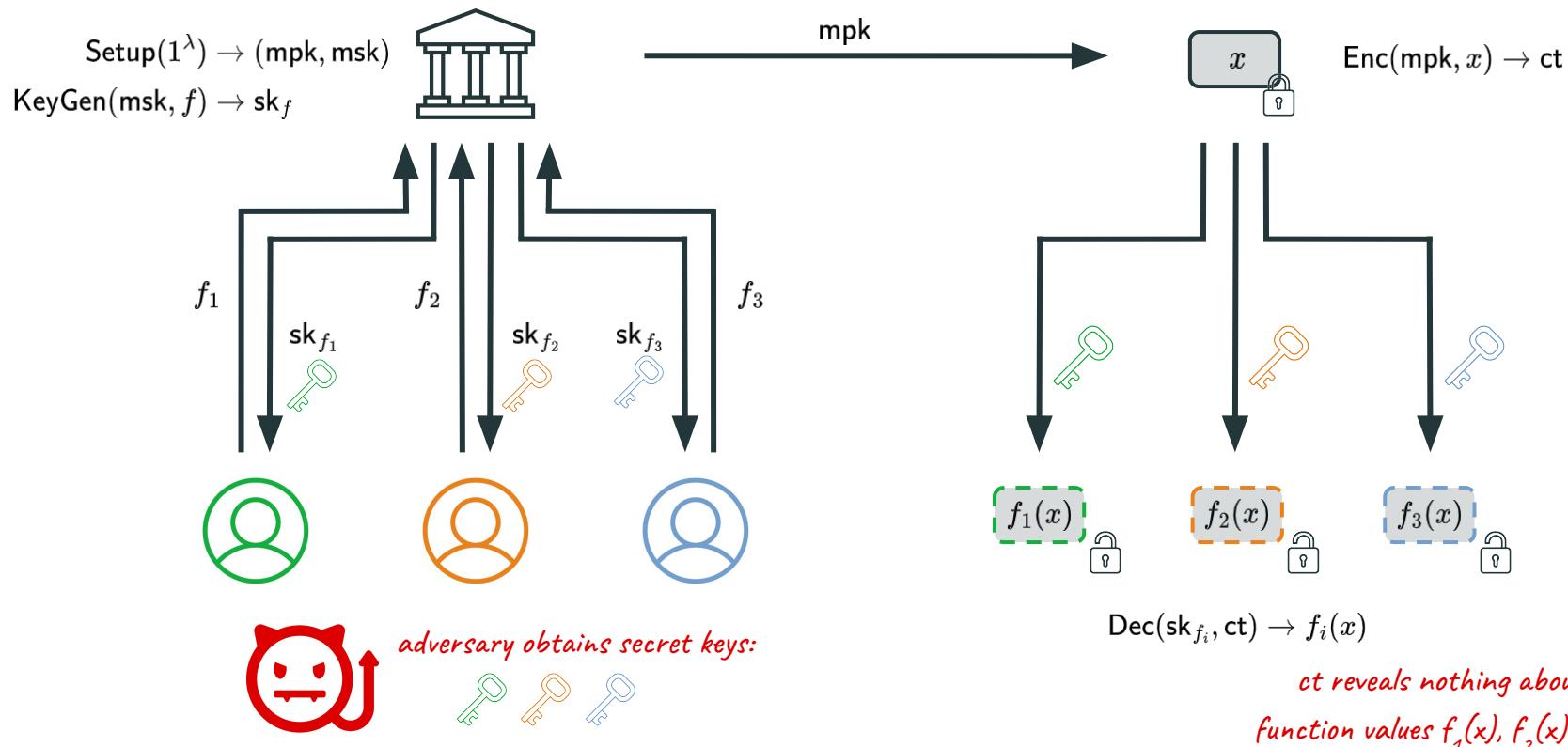
Functional Encryption [TCC:BSW11]



The Problem with FE Security

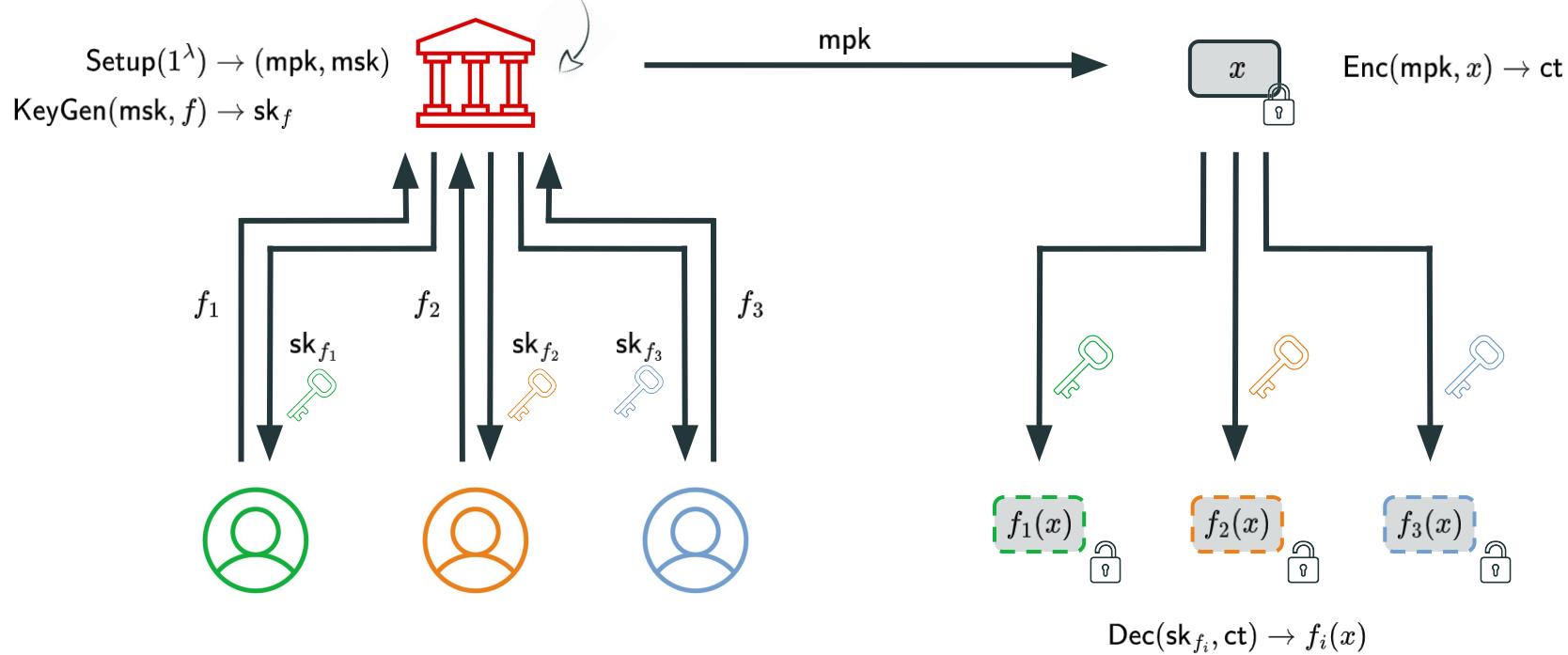


The Problem with FE Security



The Problem with FE Security

key-escrow problem: msk reveals $f(x)$ for all f :



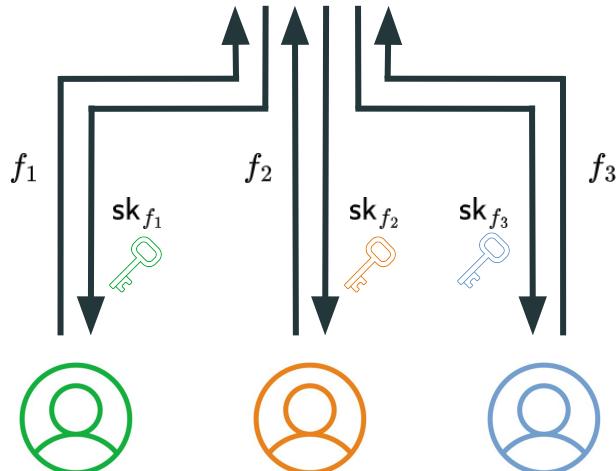
The Problem with FE Security

key-escrow problem: msk reveals $f(x)$ for all f :

$\text{Setup}(1^\lambda) \rightarrow (\text{mpk}, \text{msk})$

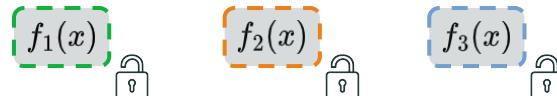
$\text{KeyGen}(\text{msk}, f) \rightarrow \text{sk}_f$

mpk



Solutions

- multi-authority functional encryption
- distributed broadcast encryption
- registered functional encryption



$\text{Dec}(\text{sk}_{f_i}, \text{ct}) \rightarrow f_i(x)$

Registered Functional Encryption* [AC:FFM+23]

$\text{Setup}(1^\lambda) \rightarrow \text{crs}$

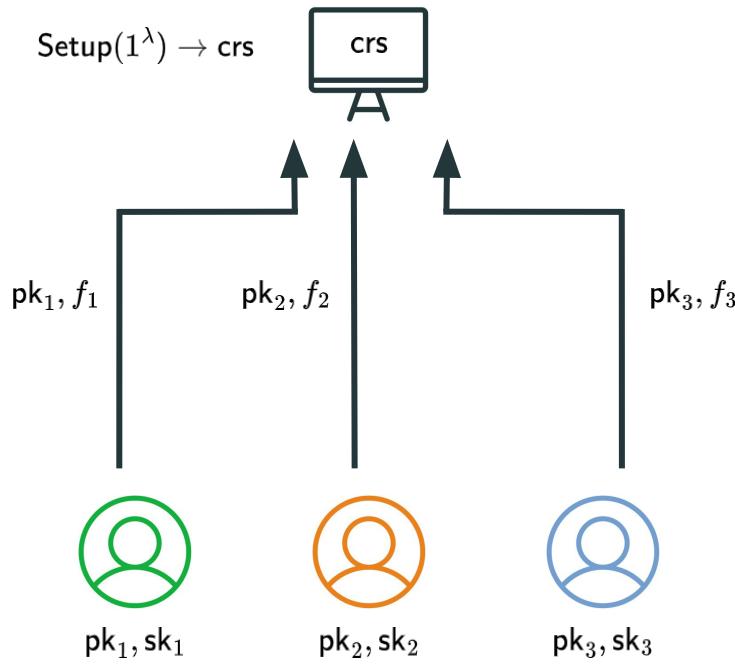
pk_1, sk_1

pk_2, sk_2

pk_3, sk_3

$\text{KeyGen}(\text{crs}, i) \rightarrow (\text{pk}_i, \text{sk}_i)$

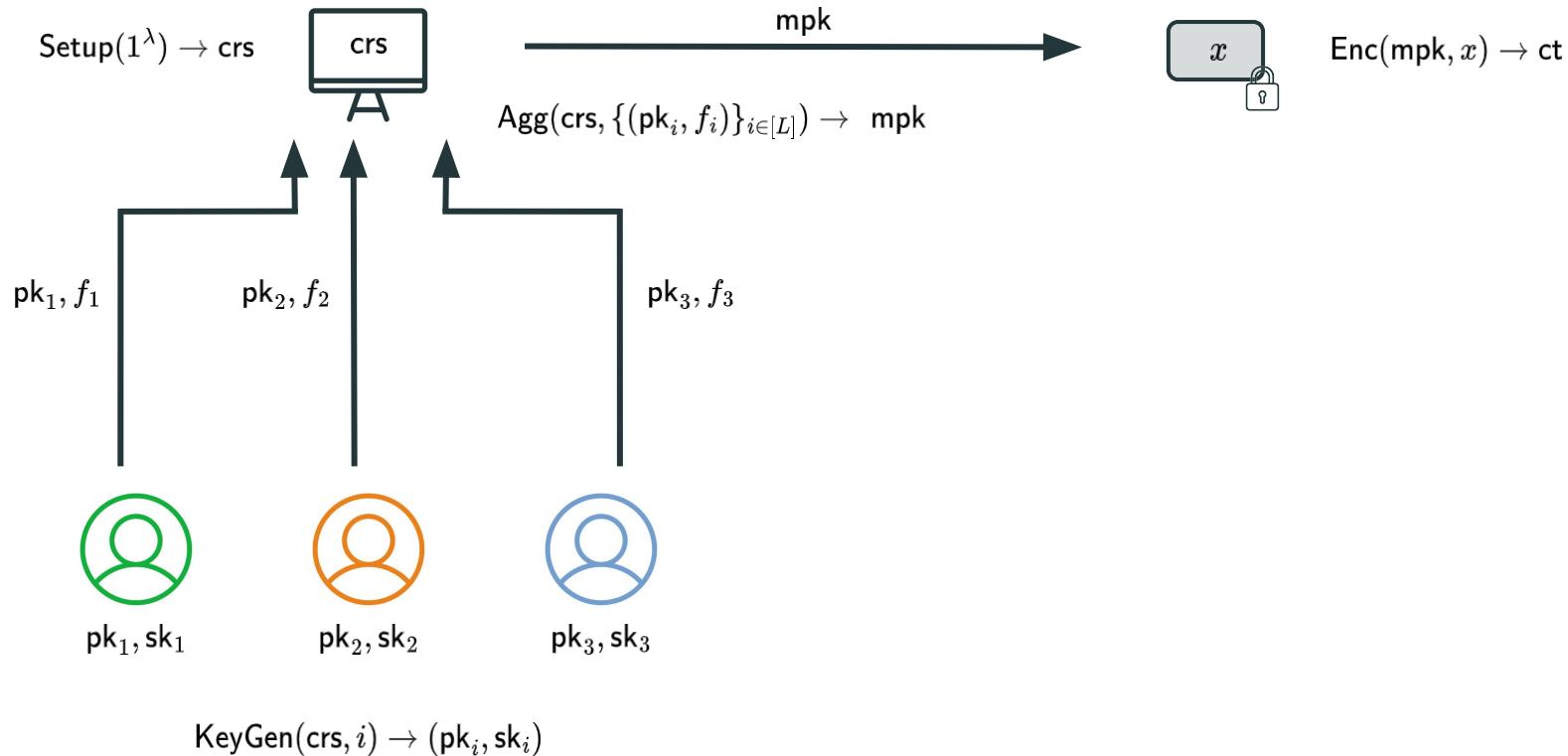
Registered Functional Encryption* [AC:FFM+23]



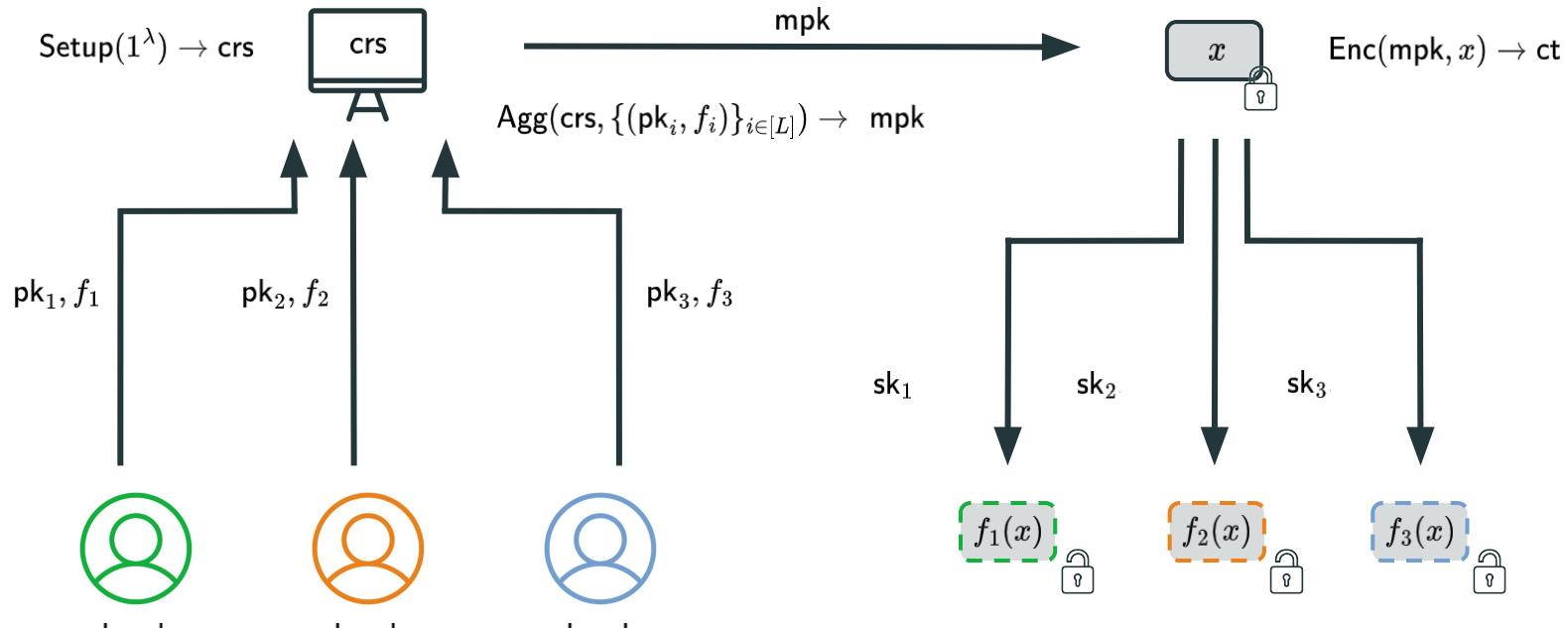
$\text{KeyGen}(\text{crs}, i) \rightarrow (\text{pk}_i, \text{sk}_i)$

** not the full story, but good enough for now*

Registered Functional Encryption* [AC:FFM+23]

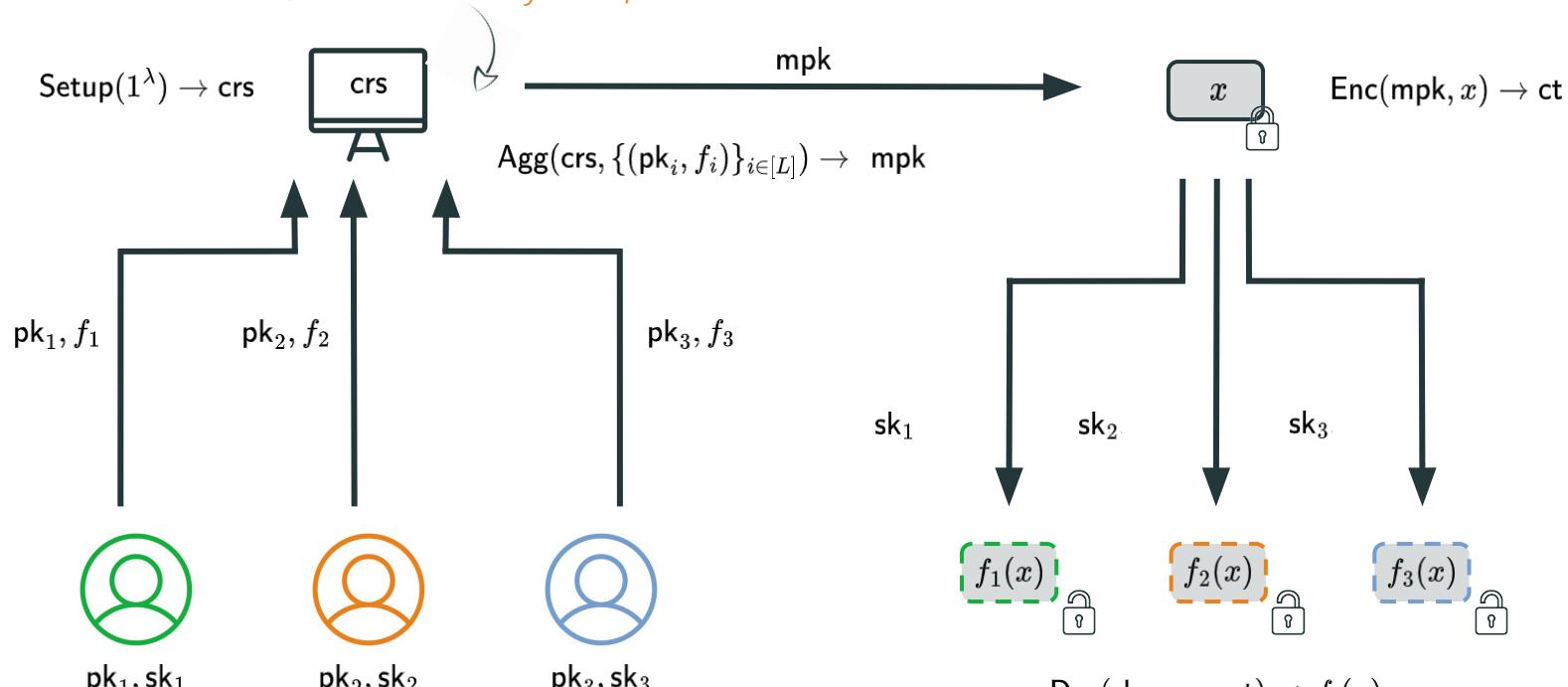


Registered Functional Encryption* [AC:FFM+23]



Registered Functional Encryption* [AC:FFM+23]

key curator is deterministic & holds no secret => key-escrow problem resolved!

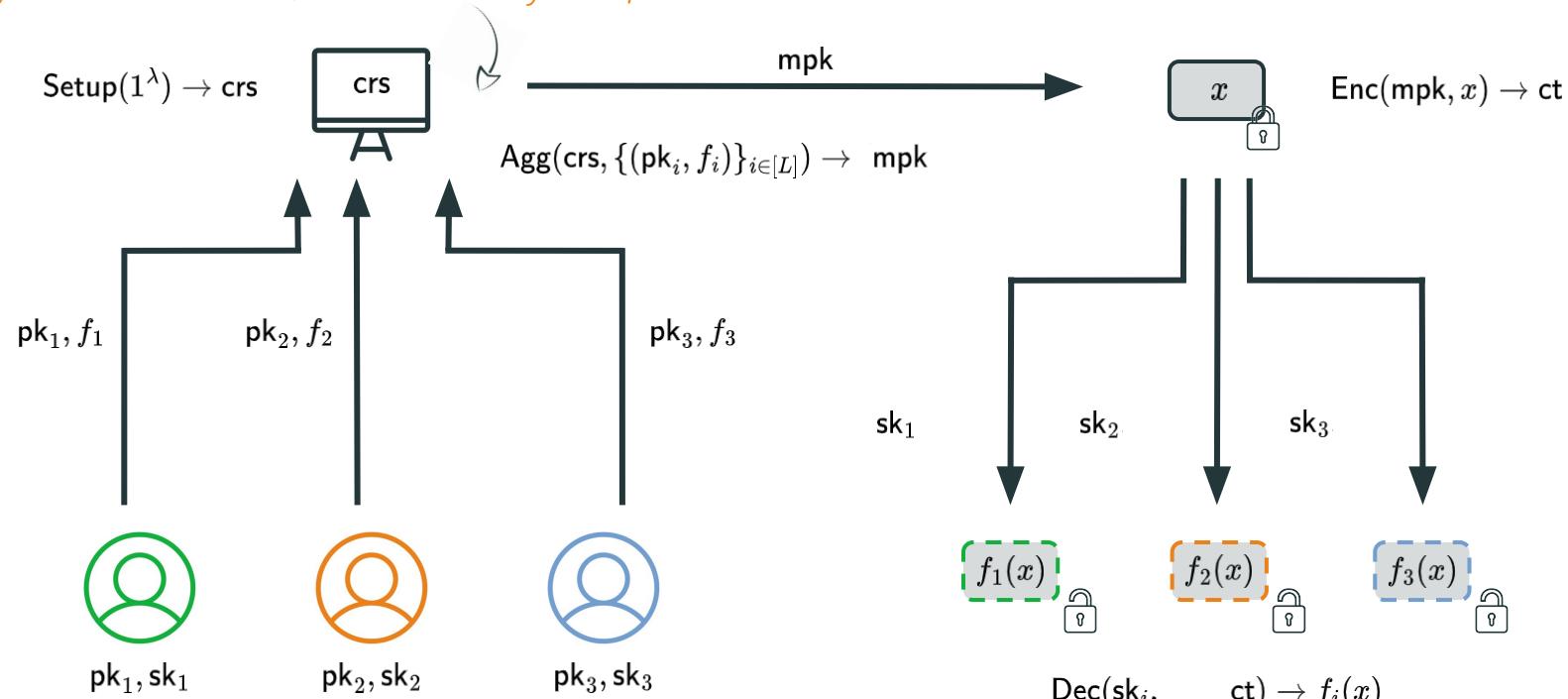


$\text{KeyGen}(\text{crs}, i) \rightarrow (pk_i, sk_i)$

* not the full story, but good enough for now

Registered Functional Encryption* [AC:FFM+23]

key curator is deterministic & holds no secret => key-escrow problem resolved!



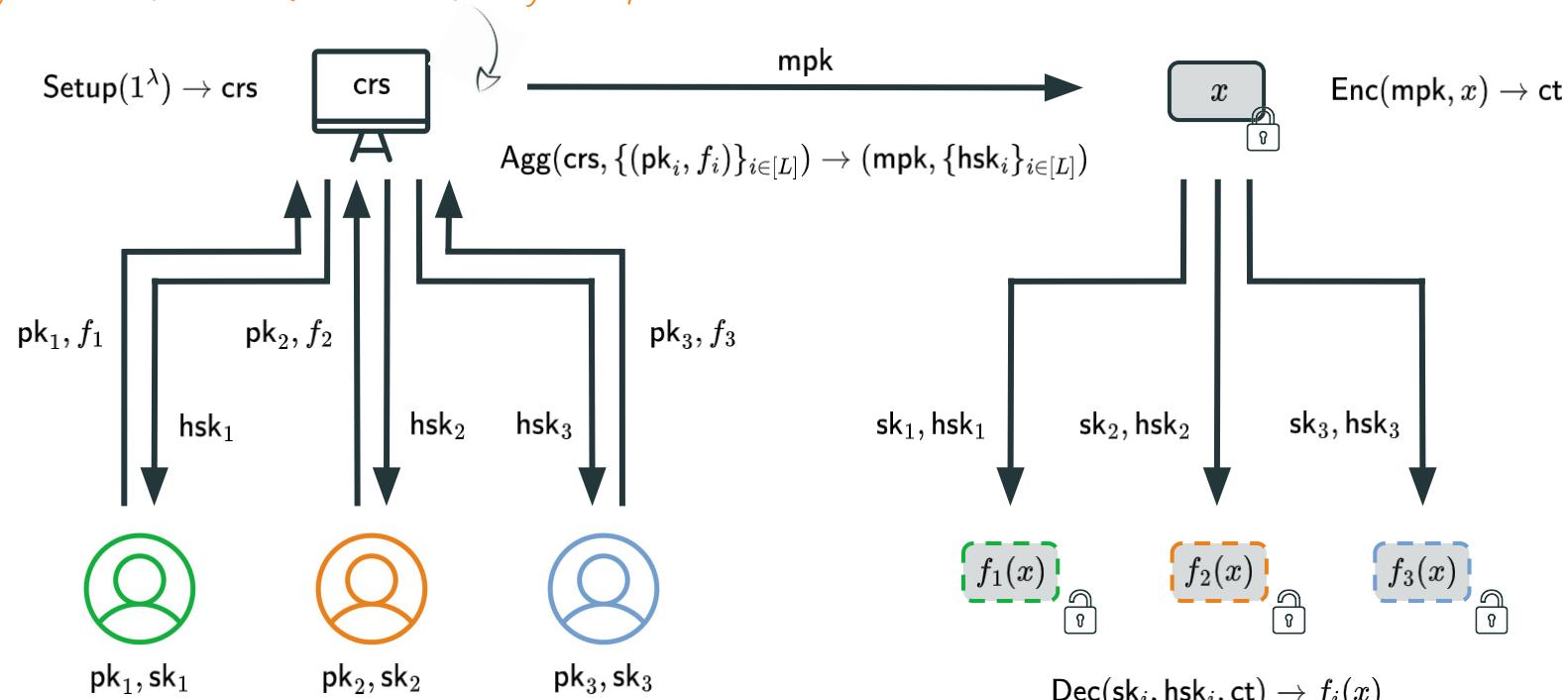
$\text{KeyGen}(\text{crs}, i) \rightarrow (\text{pk}_i, \text{sk}_i)$

compactness: $|\text{mpk}|, |\text{ct}| = \text{poly}(\log L)$ where $L = \# \text{users}$

* not the full story, but good enough for now

Registered Functional Encryption* [AC:FFM+23]

key curator is deterministic & holds no secret => key-escrow problem resolved!

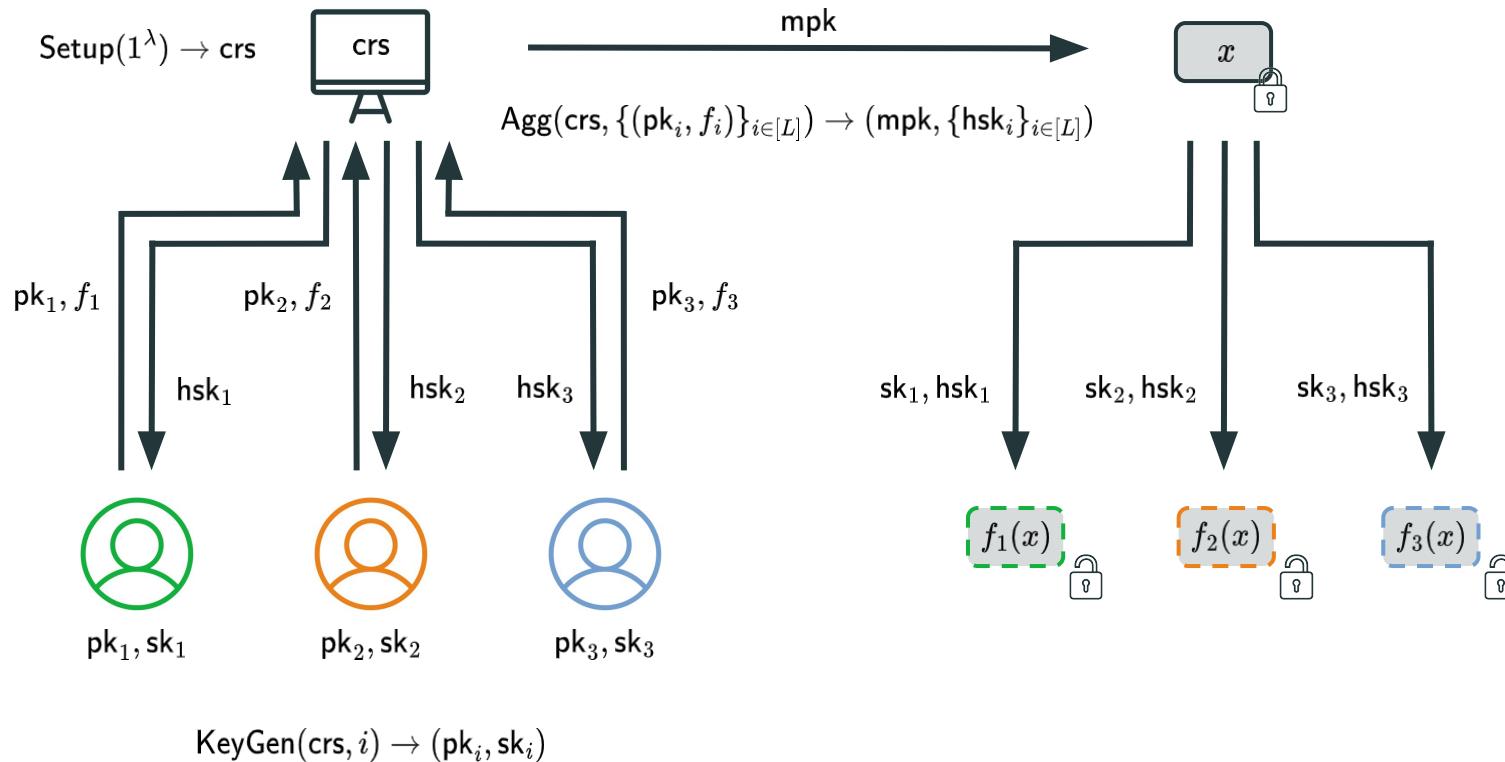


KeyGen(crs, i) → (pk_i, sk_i)

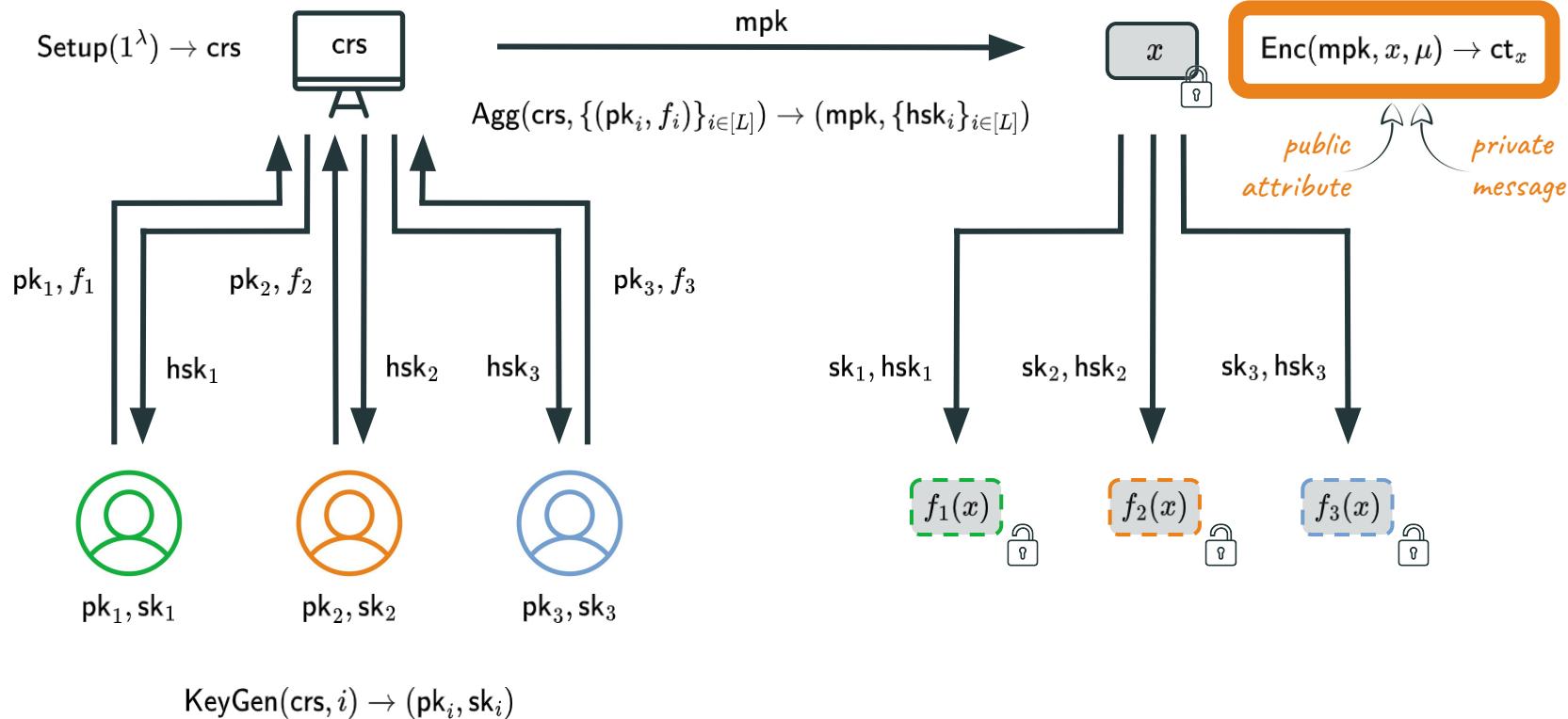
compactness: |mpk|, |ct|, |hsk| = poly(log L) where L = #users

* not the full story, but good enough for now

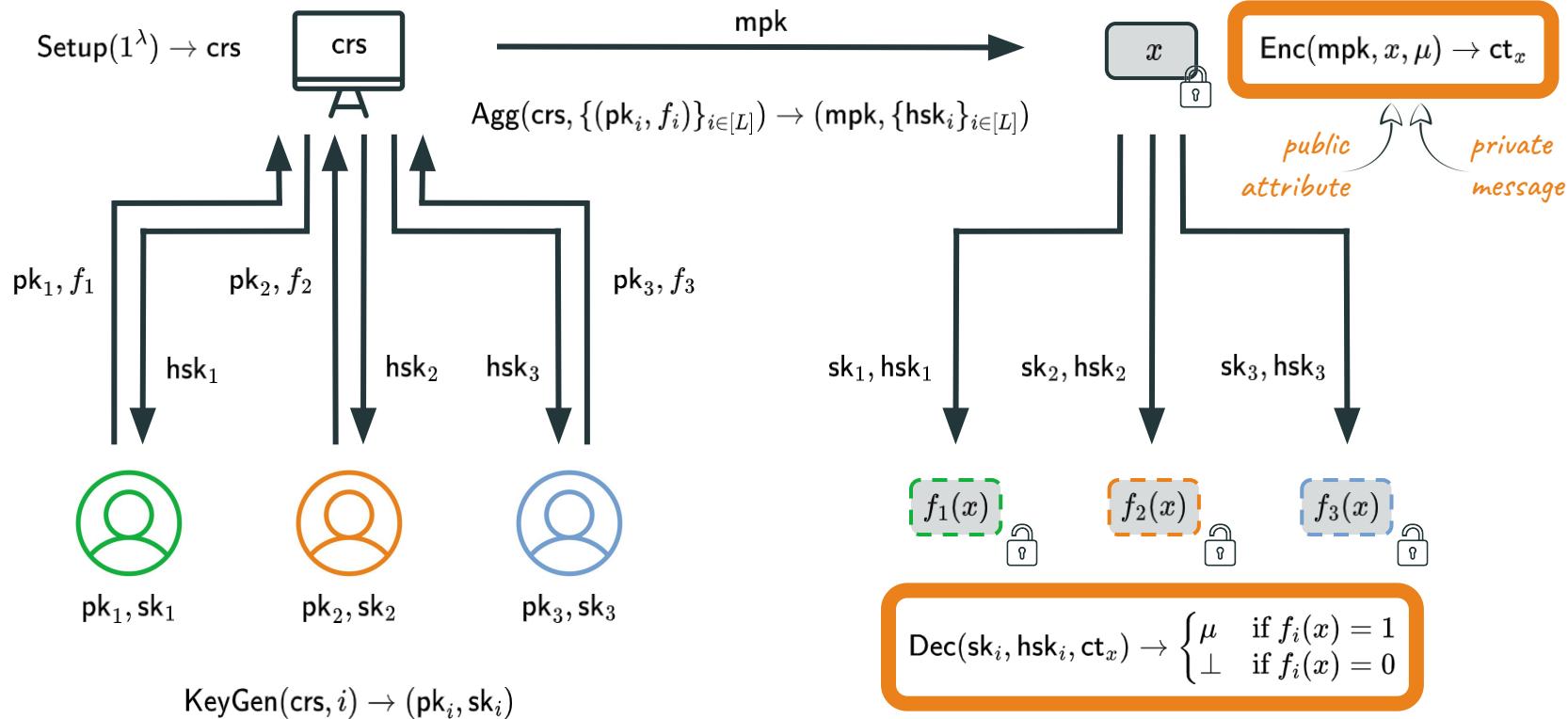
Special Case: Registered Attribute-Based Encryption



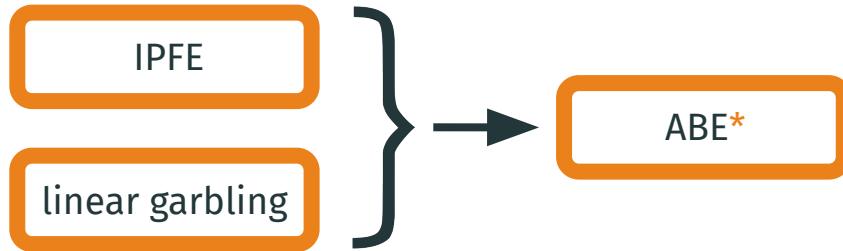
Special Case: Registered Attribute-Based Encryption



Special Case: Registered Attribute-Based Encryption



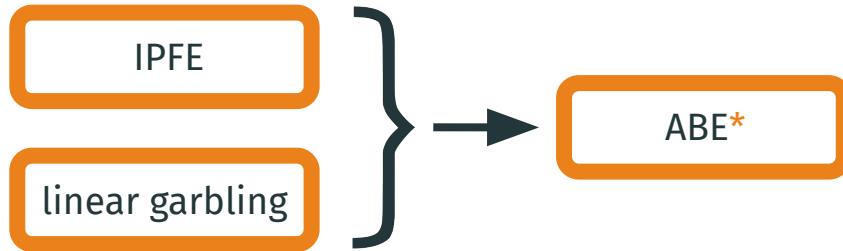
State of the Art. ABE \leftrightarrow Registered ABE



* natural generalization to FE

- (Plain) ABE and FE.
 - ✓ modular – easy-to-verify building blocks
 - ✓ powerful – uniform models of computation, partially-hiding FE
 - ✓ versatile – flexible assumptions on different structures (pairings, lattices)

State of the Art. ABE \leftrightarrow Registered ABE



* natural generalization to FE

- (Plain) ABE and FE.
 - ✓ modular – easy-to-verify building blocks
 - ✓ powerful – uniform models of computation, partially-hiding FE
 - ✓ versatile – flexible assumptions on different structures (pairings, lattices)
- Registered ABE and FE.
 - ✗ complex constructions, hard to verify
 - ✗ limited flexibility (few concrete functionalities and assumptions)

State of the Art. ABE \leftrightarrow Registered ABE

* natural generalization to FE

- (Plain) ABE and FE.
 - ✓ modular – easy-to-verify building blocks
 - ✓ powerful – uniform models of computation, partially-hiding FE
 - ✓ versatile – flexible assumptions on different structures (pairings, lattices)
- Registered ABE and FE.
 - ✗ complex constructions, hard to verify
 - ✗ limited flexibility (few concrete functionalities and assumptions)

Linear Garbling [FOCS:AIK11, ICALP:IW14, EC:LL20] *(Generalization of LSSS)*

1. $\text{Garble}(f, \sigma; \mathbf{r}) \rightarrow (L_1, \dots, L_m)$

- low-degree (**affine**) functions in **public** input \mathbf{x} (“label functions”)
- coefficient vectors $(\mathbf{L}_1, \dots, \mathbf{L}_m)$ encode **secret** input σ and randomness \mathbf{r}

2. $\ell_1 = L_1(\mathbf{x}) = \langle (1, \mathbf{x}), \mathbf{L}_1 \rangle, \dots, \ell_m = L_m(\mathbf{x}) = \langle (1, \mathbf{x}), \mathbf{L}_m \rangle$

- ℓ_1, \dots, ℓ_m (“labels”)

Linear Garbling [FOCS:AIK11, ICALP:IW14, EC:LL20] (Generalization of LSSS)

1. $\text{Garble}(f, \sigma; \mathbf{r}) \rightarrow (L_1, \dots, L_m)$

- low-degree (affine) functions in *public* input \mathbf{x} (“label functions”)
- coefficient vectors $(\mathbf{L}_1, \dots, \mathbf{L}_m)$ encode *secret* input σ and randomness \mathbf{r}

2. $\ell_1 = L_1(\mathbf{x}) = \langle (1, \mathbf{x}), \mathbf{L}_1 \rangle, \dots, \ell_m = L_m(\mathbf{x}) = \langle (1, \mathbf{x}), \mathbf{L}_m \rangle$

- ℓ_1, \dots, ℓ_m (“labels”)

3. $\text{Eval}(f, \mathbf{x}, \ell_1, \dots, \ell_m) \rightarrow \sigma \cdot f(\mathbf{x})$

- high degree in \mathbf{x}
- *security*: ℓ_1, \dots, ℓ_m reveal nothing about σ beyond $\sigma \cdot f(\mathbf{x})$

Linear Garbling [FOCS:AIK11, ICALP:IW14, EC:LL20] (Generalization of LSSS)

1. $\text{Garble}(f, \sigma; \mathbf{r}) \rightarrow (L_1, \dots, L_m)$

- low-degree (affine) functions in *public* input \mathbf{x} (“label functions”)
- coefficient vectors $(\mathbf{L}_1, \dots, \mathbf{L}_m)$ encode *secret* input σ and randomness \mathbf{r}

2. $\ell_1 = L_1(\mathbf{x}) = \langle (1, \mathbf{x}), \mathbf{L}_1 \rangle, \dots, \ell_m = L_m(\mathbf{x}) = \langle (1, \mathbf{x}), \mathbf{L}_m \rangle$

- ℓ_1, \dots, ℓ_m (“labels”)

Hide σ and \mathbf{r} ? \rightarrow Hide these multiplications!

3. $\text{Eval}(f, \mathbf{x}, \ell_1, \dots, \ell_m) \rightarrow \sigma \cdot f(\mathbf{x})$

- high degree in \mathbf{x}
- *security*: ℓ_1, \dots, ℓ_m reveal nothing about σ beyond $\sigma \cdot f(\mathbf{x})$

Linear Garbling [FOCS:AIK11, ICALP:IW14, EC:LL20] (Generalization of LSSS)

1. $\text{Garble}(f, \sigma; \mathbf{r}) \rightarrow (L_1, \dots, L_m)$

- low-degree (affine) functions in *public* input \mathbf{x} (“label functions”)
- coefficient vectors $(\mathbf{L}_1, \dots, \mathbf{L}_m)$ encode *secret* input σ and randomness \mathbf{r}

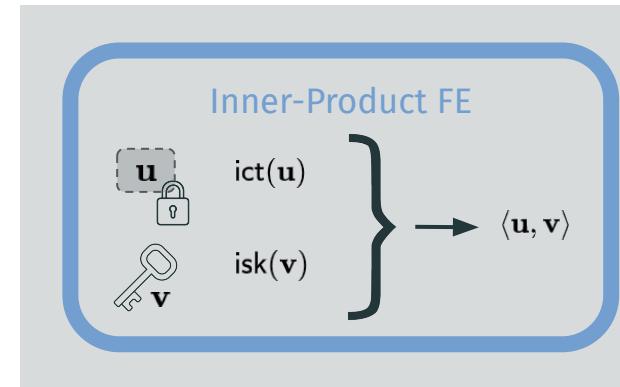
2. $\ell_1 = L_1(\mathbf{x}) = \langle (1, \mathbf{x}), \mathbf{L}_1 \rangle, \dots, \ell_m = L_m(\mathbf{x}) = \langle (1, \mathbf{x}), \mathbf{L}_m \rangle$

- ℓ_1, \dots, ℓ_m (“labels”)

3. $\text{Eval}(f, \mathbf{x}, \ell_1, \dots, \ell_m) \rightarrow \sigma \cdot f(\mathbf{x})$

- high degree in \mathbf{x}
- *security*: ℓ_1, \dots, ℓ_m reveal nothing about σ beyond $\sigma \cdot f(\mathbf{x})$

Hide σ and \mathbf{r} ? \rightarrow Hide these multiplications!

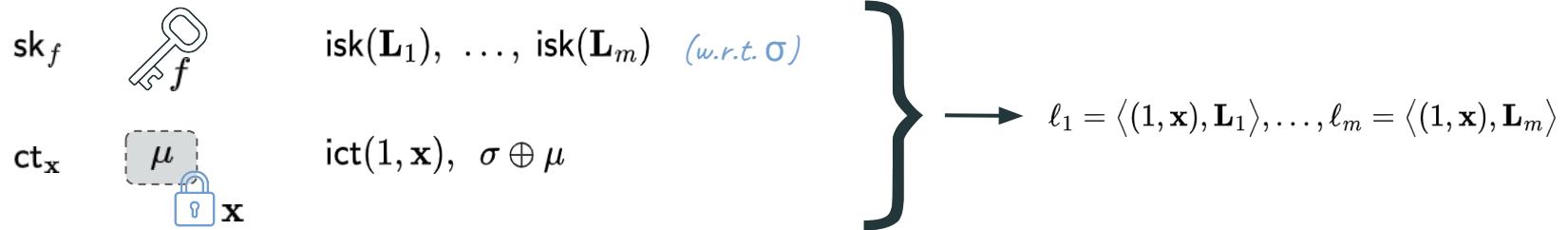


General Paradigm. $\text{ABE} \leftarrow \text{IPFE} \circ \text{Garbling}$

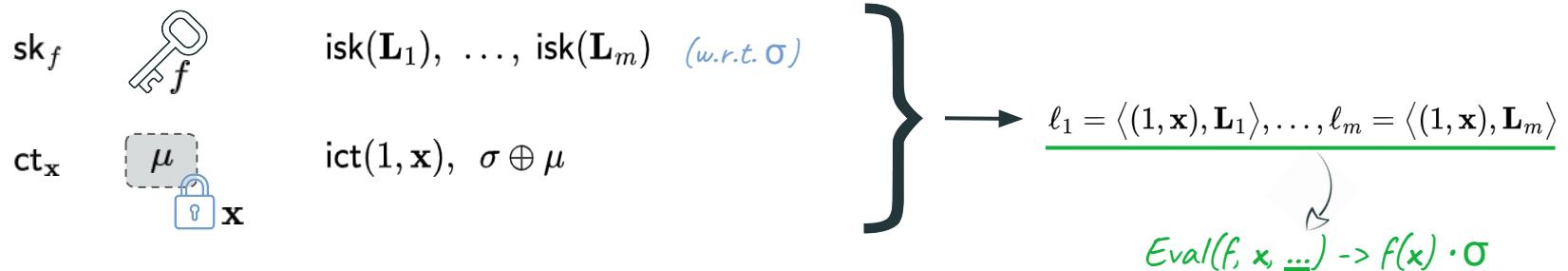
sk_f $\text{isk}(\mathbf{L}_1), \dots, \text{isk}(\mathbf{L}_m)$ (w.r.t. σ)

ct_x μ $\text{ict}(1, \mathbf{x}), \sigma \oplus \mu$

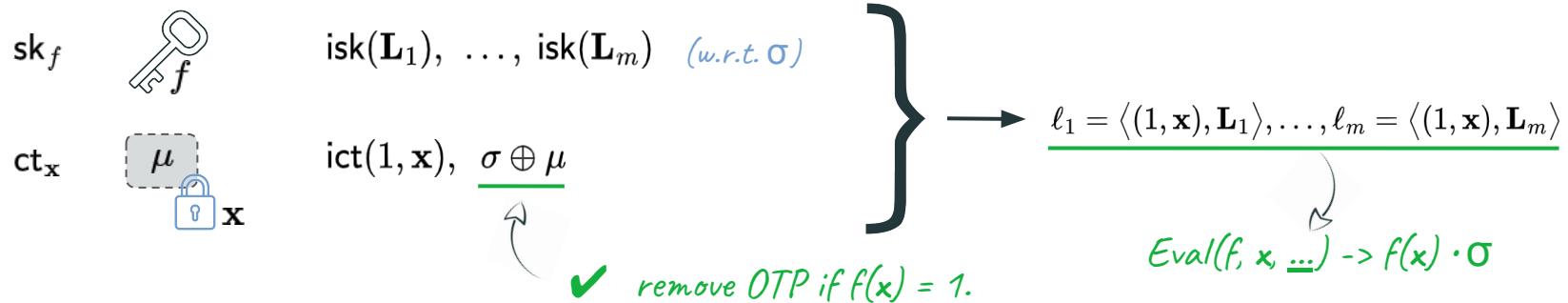
General Paradigm. ABE \leftarrow IPFE \circ Garbling



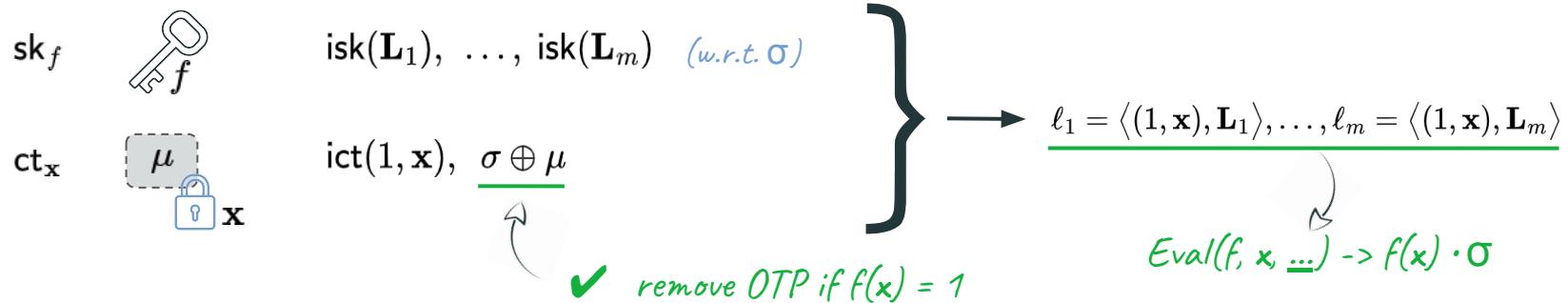
General Paradigm. ABE \leftarrow IPFE \circ Garbling



General Paradigm. ABE \leftarrow IPFE \circ Garbling



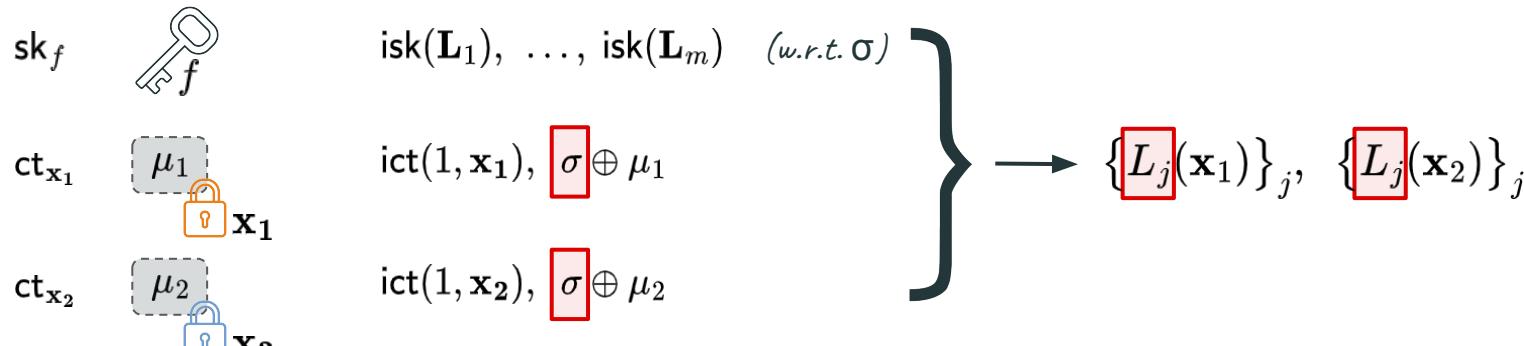
General Paradigm. ABE \leftarrow IPFE \circ Garbling



One-Time Security

1. IPFE \rightarrow only labels revealed
2. garbling \rightarrow only $\sigma \cdot f(\mathbf{x})$ revealed
3. σ is OTP for μ when $f(\mathbf{x}) = 0$

General Paradigm. $\text{ABE} \leftarrow \text{IPFE} \circ \text{Garbling}$

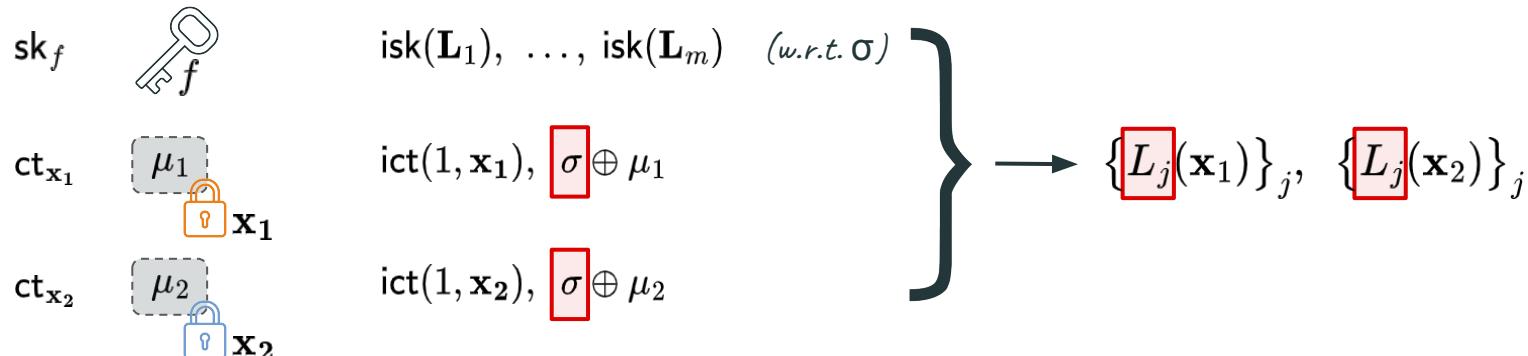


\times Garbling security breaks if label functions are reused!

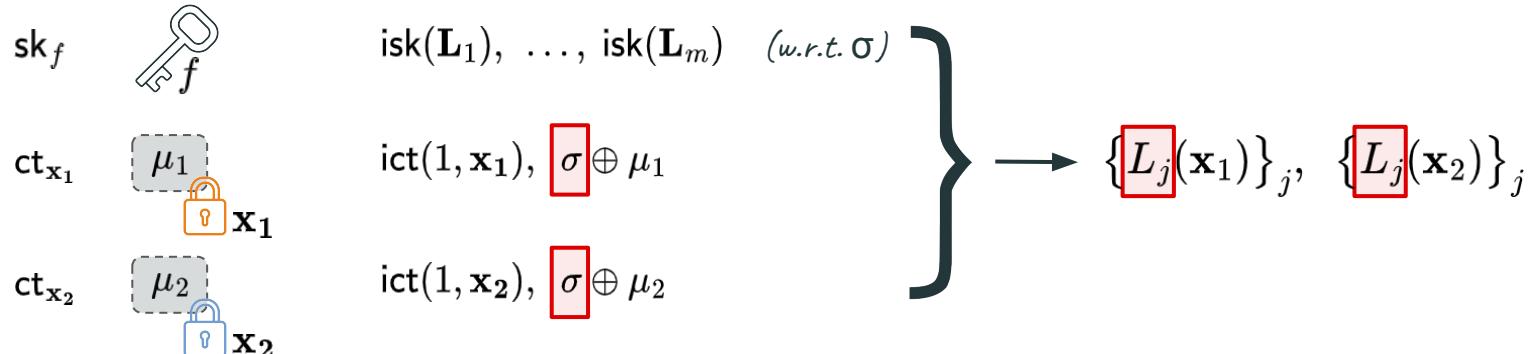
One-Time Security

1. IPFE \rightarrow only labels revealed
2. garbling \rightarrow only $\sigma \cdot f(\mathbf{x})$ revealed
3. σ is OTP for μ when $f(\mathbf{x}) = 0$

General Paradigm. $\text{ABE} \leftarrow \text{IPFE} \circ \text{Garbling}$

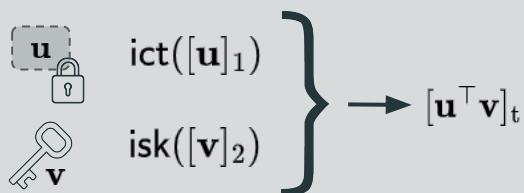


General Paradigm. ABE \leftarrow IPFE \circ Garbling

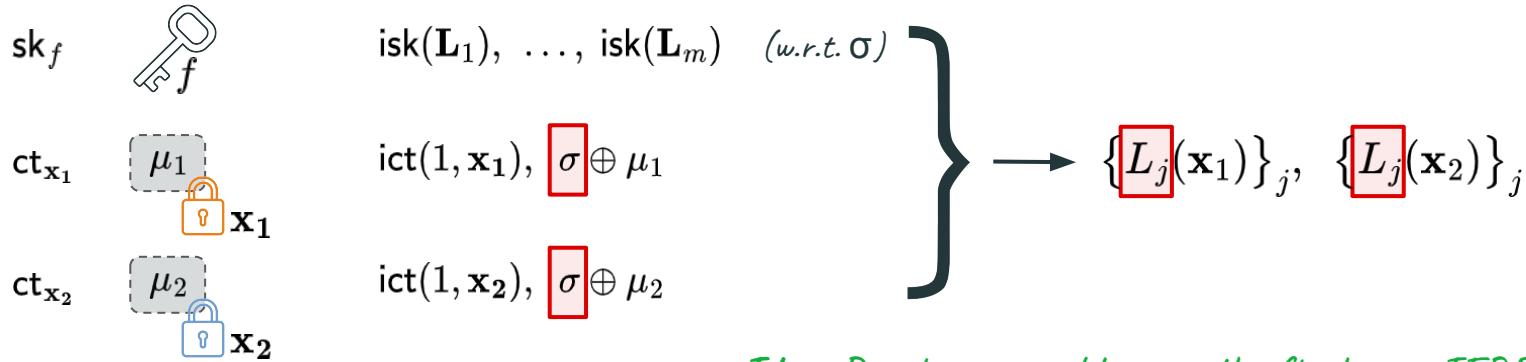


Idea. Randomize garbling on the fly during IPFE decryption.

Pairing-Based IPFE

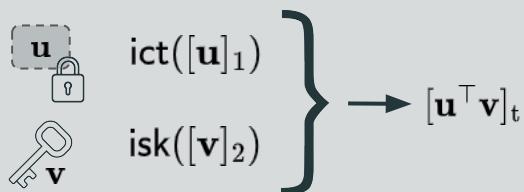


General Paradigm. $ABE \leftarrow \text{IPFE} \circ \text{Garbling}$



Idea. Randomize garbling on the fly during IPFE decryption.

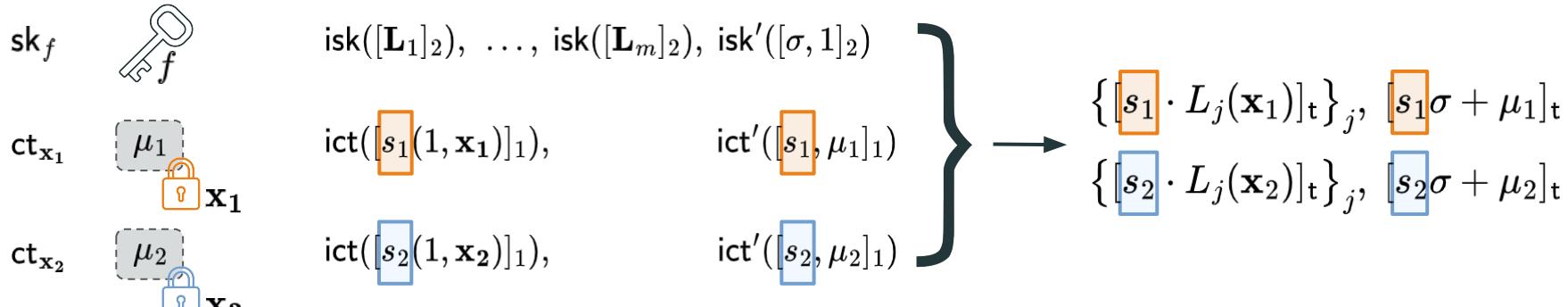
Pairing-Based IPFE



Linearity Properties of Linear Garbling

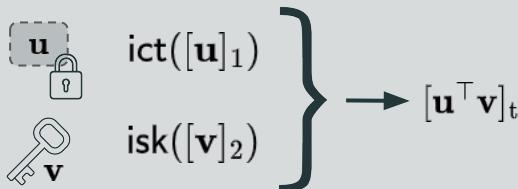
- $\text{Garble}(f, \sigma; \mathbf{r}) \rightarrow (L_1, \dots, L_m)$
linear in (σ, \mathbf{r})

General Paradigm. ABE \leftarrow IPFE \circ Garbling



Idea. Randomize garbling on the fly during IPFE decryption.

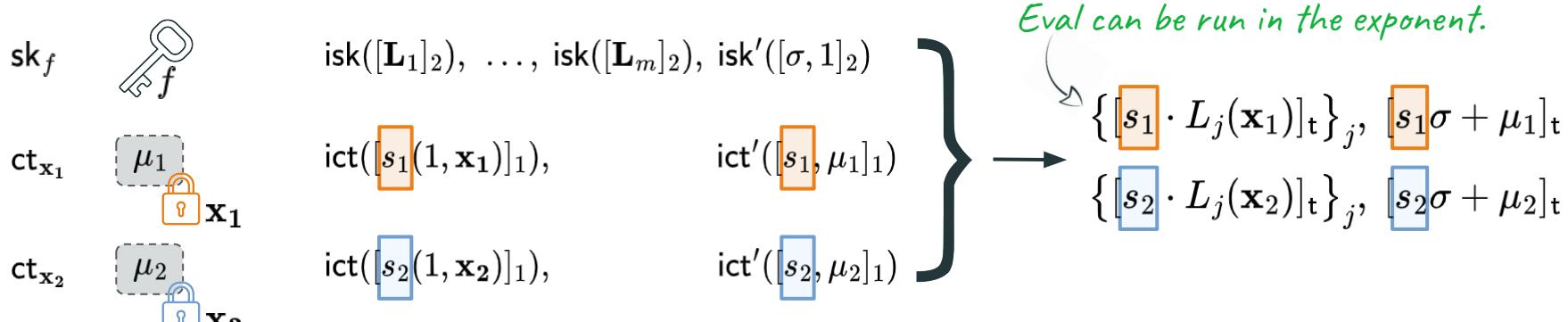
Pairing-Based IPFE



Linearity Properties of Linear Garbling

- $\text{Garble}(f, \sigma; \mathbf{r}) \rightarrow (L_1, \dots, L_m)$
linear in (σ, \mathbf{r})

General Paradigm. $ABE \leftarrow \text{IPFE} \circ \text{Garbling}$



Idea. Randomize garbling on the fly during IPFE decryption.

Pairing-Based IPFE

$$\left. \begin{array}{l} \text{u} \\ \text{v} \end{array} \right\} \rightarrow [\mathbf{u}^\top \mathbf{v}]_t$$

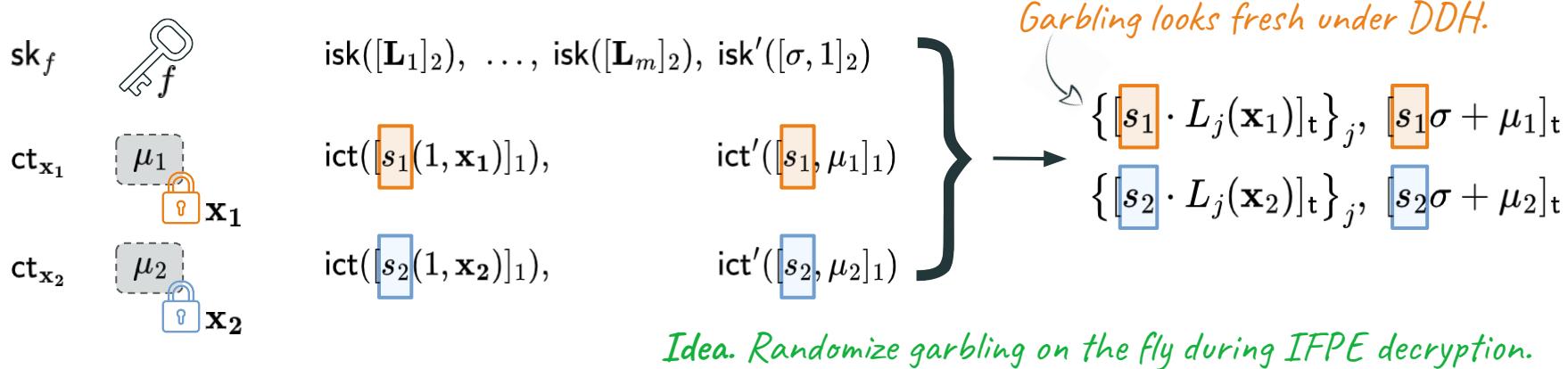
$\text{ict}([\mathbf{u}]_1)$

$\text{isk}([\mathbf{v}]_2)$

Linearity Properties of Linear Garbling

- $\text{Garble}(f, \sigma; \mathbf{r}) \rightarrow (L_1, \dots, L_m)$
linear in (σ, \mathbf{r})
- $\text{Eval}(f, \mathbf{x}, \ell_1, \dots, \ell_m) \rightarrow \sigma \cdot f(\mathbf{x})$
linear in ℓ_1, \dots, ℓ_m

General Paradigm. $\text{ABE} \leftarrow \text{IPFE} \circ \text{Garbling}$



Pairing-Based IPFE

$$\left. \begin{array}{l} \text{ct}([\mathbf{u}]_1) \\ \text{isk}([\mathbf{v}]_2) \end{array} \right\} \rightarrow [\mathbf{u}^\top \mathbf{v}]_t$$

Linearity Properties of Linear Garbling

- $\text{Garble}(f, \sigma; \mathbf{r}) \rightarrow (L_1, \dots, L_m)$
linear in (σ, \mathbf{r})
- $\text{Eval}(f, \mathbf{x}, \ell_1, \dots, \ell_m) \rightarrow \sigma \cdot f(\mathbf{x})$
linear in ℓ_1, \dots, ℓ_m

General Paradigm. $\text{Reg-ABE} \leftarrow \text{Reg-IPFE} \circ \text{Garbling}$

General Paradigm. $\text{Reg-ABE} \leftarrow \text{Reg-IPFE} \circ \text{Garbling}$

Challenges in the Registered Setting.

- (1) Registered IPFE supporting registration of **vectors over group** unknown

General Paradigm. $\text{Reg-ABE} \leftarrow \text{Reg-IPFE} \circ \text{Garbling}$

Challenges in the Registered Setting.

- (1) Registered IPFE supporting registration of **vectors over group** unknown
- (2) Sampling of **user-specific** randomness
 - key generation performed by (potentially **malicious**) users
 - aggregation is **deterministic**
 - encryption time is polylogarithmic in number of users (**compactness**)

General Paradigm. $\text{Reg-ABE} \leftarrow \text{Reg-IPFE} \circ \text{Garbling}$

Challenges in the Registered Setting.

- (1) Registered IPFE supporting registration of **vectors over group** unknown
- (2) Sampling of **user-specific** randomness
 - key generation performed by (potentially **malicious**) users
 - aggregation is **deterministic**
 - encryption time is polylogarithmic in number of users (**compactness**)
 - setup performed before user functions are known \rightsquigarrow **decompose garbling procedure**

Linearity to the Rescue

- divide garbling algorithm into two phases
 - probabilistic offline phase:** $\text{sample}(\sigma, \mathbf{r})$
 - deterministic online phase:** compute matrix $\widehat{\mathbf{L}} = (\widehat{\mathbf{L}}_1 \| \dots \| \widehat{\mathbf{L}}_m)$ s.t. $\mathbf{L}_i = (\mathbf{I}_{1+|\mathbf{x}|} \otimes (\sigma, \mathbf{r})) \cdot \widehat{\mathbf{L}}_i$

Linearity Properties of Linear Garbling

- $\text{Garble}(f, \sigma; \mathbf{r}) \rightarrow \mathbf{L} = (\mathbf{L}_1 \| \dots \| \mathbf{L}_m)$ linear in (σ, \mathbf{r})
- $\ell = (\ell_1, \dots, \ell_m) = (1, \mathbf{x}) \cdot \mathbf{L}$ affine in \mathbf{x}

Linearity to the Rescue

- divide garbling algorithm into two phases
 - probabilistic offline phase:** $\text{sample}(\sigma, \mathbf{r})$
 - deterministic online phase:** compute matrix $\widehat{\mathbf{L}} = (\widehat{\mathbf{L}}_1 \| \dots \| \widehat{\mathbf{L}}_m)$ s.t. $\mathbf{L}_i = (\mathbf{I}_{1+|\mathbf{x}|} \otimes (\sigma, \mathbf{r})) \cdot \widehat{\mathbf{L}}_i$

$$\boldsymbol{\ell} = (1, \mathbf{x}) \cdot \mathbf{L} = (1, \mathbf{x}) \cdot (\mathbf{I}_{1+\mathbf{x}} \otimes (\sigma, \mathbf{r})) \cdot \widehat{\mathbf{L}} = ((1, \mathbf{x}) \otimes (\sigma, \mathbf{r})) \cdot \widehat{\mathbf{L}}$$

Linearity Properties of Linear Garbling

- $\text{Garble}(f, \sigma; \mathbf{r}) \rightarrow \mathbf{L} = (\mathbf{L}_1 \| \dots \| \mathbf{L}_m)$ linear in (σ, \mathbf{r})
- $\boldsymbol{\ell} = (\ell_1, \dots, \ell_m) = (1, \mathbf{x}) \cdot \mathbf{L}$ affine in \mathbf{x}

Linearity to the Rescue

- divide garbling algorithm into two phases
 - probabilistic offline phase:** $\text{sample}(\sigma, \mathbf{r})$
 - deterministic online phase:** compute matrix $\widehat{\mathbf{L}} = (\widehat{\mathbf{L}}_1 \| \dots \| \widehat{\mathbf{L}}_m)$ s.t. $\mathbf{L}_i = (\mathbf{I}_{1+|\mathbf{x}|} \otimes (\sigma, \mathbf{r})) \cdot \widehat{\mathbf{L}}_i$
$$\boldsymbol{\ell} = (1, \mathbf{x}) \cdot \mathbf{L} = (1, \mathbf{x}) \cdot (\mathbf{I}_{1+\mathbf{x}} \otimes (\sigma, \mathbf{r})) \cdot \widehat{\mathbf{L}} = ((1, \mathbf{x}) \otimes (\sigma, \mathbf{r})) \cdot \widehat{\mathbf{L}}$$
- run **offline phase** during **setup**, **online phase** during **aggregation**
→ we need **generalization of inner product functionality**

Linearity Properties of Linear Garbling

- $\text{Garble}(f, \sigma; \mathbf{r}) \rightarrow \mathbf{L} = (\mathbf{L}_1 \| \dots \| \mathbf{L}_m)$ **linear** in (σ, \mathbf{r})
- $\boldsymbol{\ell} = (\ell_1, \dots, \ell_m) = (1, \mathbf{x}) \cdot \mathbf{L}$ **affine** in \mathbf{x}

Reg-FE for IP (Batch Variant)

$$\begin{array}{c} \text{encryption} \\ \left(\begin{array}{c} \hline \\ \hline \\ \hline \end{array} \right) \\ \mathbf{U} \end{array} \quad \begin{array}{c} \text{aggregation} \\ \left(\begin{array}{c|c|c} \hline & & \\ \hline & & \\ \hline & & \end{array} \right) = \left(\begin{array}{c} \hline \\ \hline \end{array} \right) \\ \mathbf{V}_i \end{array} \quad \begin{array}{c} \text{decryption} \\ \left(\begin{array}{c} \hline \\ \hline \end{array} \right) \\ \mathbf{UV}_i \end{array}$$

Reg-FE for Pre-IP (Batch Variant)

encryption setup aggregation decryption

$$\begin{pmatrix} \hline \\ \hline \\ \hline \end{pmatrix} \begin{pmatrix} \hline \\ \hline \\ \hline \end{pmatrix} \begin{pmatrix} | & | & | \end{pmatrix} = \begin{pmatrix} \hline \\ \hline \end{pmatrix}$$

\mathbf{U} \mathbf{P}_i \mathbf{V}_i $\boxed{\mathbf{U}\mathbf{P}_i\mathbf{V}_i}$

Reg-FE for Pre-IP (Batch Variant)

$$\begin{array}{cccc} \text{encryption} & \text{setup} & \text{aggregation} & \text{decryption} \\ \left(\begin{array}{c} \hline \\ \hline \\ \hline \end{array} \right) \left(\begin{array}{c} \hline \\ \hline \\ \hline \end{array} \right) \left(\begin{array}{c|c|c} \hline & & \\ \hline & & \\ \hline & & \end{array} \right) = \left(\begin{array}{c} \hline \\ \hline \\ \hline \end{array} \right) \\ \mathbf{U} & \mathbf{P}_i & \mathbf{V}_i & \boxed{\mathbf{U} \mathbf{P}_i \mathbf{V}_i} \end{array}$$

Theorem. Reg-FE for Pre-IP can be built from (bilateral) MDDH.

How to Pick the Matrices?

encryption	setup	aggregation	decryption
$(\mu, s, ((1, \mathbf{x}) \otimes s \mathbf{I}_{1+ r }))$	$\begin{pmatrix} 1 \\ \sigma_i \\ \mathbf{I}_{1+ \mathbf{x} } \otimes (\sigma_i, \mathbf{r}_i) \end{pmatrix}$	$\begin{pmatrix} 1 \\ \widehat{\mathbf{L}}_i \end{pmatrix}$	$(\mu + s\sigma_i, ((1, \mathbf{x}) \otimes (s\sigma_i, s\mathbf{r}_i)) \cdot \widehat{\mathbf{L}}_i)$
$[\mathbf{U}]_1$	$[\mathbf{P}_i]_2$	\mathbf{V}_i	$[\mathbf{U}\mathbf{P}_i\mathbf{V}_i]_{\text{t}}$

Formula for Garbling Labels.

$$\boldsymbol{\ell} = (\ell_1, \dots, \ell_m) = ((1, \mathbf{x}) \otimes (\sigma, \mathbf{r})) \cdot \widehat{\mathbf{L}}$$

How to Pick the Matrices?

encryption	setup	aggregation	decryption
$(\mu, s, ((1, \mathbf{x}) \otimes s\mathbf{I}_{1+ r }))$	$\begin{pmatrix} 1 \\ \sigma_i \\ \mathbf{I}_{1+ \mathbf{x} } \otimes (\sigma_i, \mathbf{r}_i) \end{pmatrix}$	$\begin{pmatrix} 1 \\ \widehat{\mathbf{L}}_i \end{pmatrix}$	$(\mu + s\sigma_i, ((1, \mathbf{x}) \otimes (s\sigma_i, s\mathbf{r}_i)) \cdot \widehat{\mathbf{L}}_i)$
$[\mathbf{U}]_1$	$[\mathbf{P}_i]_2$	\mathbf{V}_i	$[\mathbf{U}\mathbf{P}_i\mathbf{V}_i]_t$

Correctness. RIPFE decryption yields $[\mu + s\sigma_i]_t, [((1, \mathbf{x}) \otimes (s\sigma_i, s\mathbf{r}_i)) \cdot \widehat{\mathbf{L}}_i]_t$

$\hookrightarrow \text{Eval}(\dots) \rightarrow f_i(x) \cdot s\sigma_i$

Formula for Garbling Labels.

$$\boldsymbol{\ell} = (\ell_1, \dots, \ell_m) = ((1, \mathbf{x}) \otimes (\sigma, \mathbf{r})) \cdot \widehat{\mathbf{L}}$$

How to Pick the Matrices?

encryption	setup	aggregation	decryption
$(\mu, s, ((1, \mathbf{x}) \otimes s\mathbf{I}_{1+ r }))$	$\begin{pmatrix} 1 \\ \sigma_i \\ \mathbf{I}_{1+ \mathbf{x} } \otimes (\sigma_i, \mathbf{r}_i) \end{pmatrix}$	$\begin{pmatrix} 1 \\ \widehat{\mathbf{L}}_i \end{pmatrix}$	$(\mu + s\sigma_i, ((1, \mathbf{x}) \otimes (s\sigma_i, s\mathbf{r}_i)) \cdot \widehat{\mathbf{L}}_i)$
$[\mathbf{U}]_1$	$[\mathbf{P}_i]_2$	\mathbf{V}_i	$[\mathbf{U}\mathbf{P}_i\mathbf{V}_i]_t$

Security. *RIPFE leakage is* $[\mu + s\sigma_i]_t, [((1, \mathbf{x}) \otimes (s\sigma_i, s\mathbf{r}_i)) \cdot \widehat{\mathbf{L}}_i]_t$

\curvearrowright *indistinguishable from $\text{Sim}(f, x, d < \$)$*

Formula for Garbling Labels.

$$\boldsymbol{\ell} = (\ell_1, \dots, \ell_m) = ((1, \mathbf{x}) \otimes (\sigma, \mathbf{r})) \cdot \widehat{\mathbf{L}}$$

How to Pick the Matrices?

$$\text{encryption: } (\mu, s, ((1, \mathbf{x}) \otimes s \mathbf{I}_{1+|r|})) \begin{pmatrix} 1 \\ \sigma_i \\ \mathbf{I}_{1+|\mathbf{x}|} \otimes (\sigma_i, \mathbf{r}_i) \end{pmatrix} = (\mu + s\sigma_i, ((1, \mathbf{x}) \otimes (s\sigma_i, s\mathbf{r}_i)) \cdot \widehat{\mathbf{L}}_i)$$

$[\mathbf{U}]_1$

$[\mathbf{P}_i]_2$

\mathbf{V}_i

$[\mathbf{U}\mathbf{P}_i\mathbf{V}_i]_t$

What about Turing machines?

Problem: shape of \mathbf{L} and \mathbf{r} depends on
input length, runtime and space
→ study concrete garbling schemes

$$[\mu + s\sigma_i]_t, [((1, \mathbf{x}) \otimes (s\sigma_i, s\mathbf{r}_i)) \cdot \widehat{\mathbf{L}}_i]_t$$

indistinguishable from $\text{Sim}(f, x, d < \$)$

Formula for Garbling Labels.

$$\ell = (\ell_1, \dots, \ell_m) = ((1, \mathbf{x}) \otimes (\sigma, \mathbf{r})) \cdot \widehat{\mathbf{L}}$$

Generalization to Reg-FE

- so far, we used σ_1 = pad for fixed message μ (and σ_0 not used at all)

Linear Garbling

$\text{Garble}(f, \sigma_0, \sigma_1; \mathbf{r}) \rightarrow \mathbf{L} = (\mathbf{L}_1 \| \dots \| \mathbf{L}_m)$

$\text{Eval}(f, \mathbf{x}, \ell := (1, \mathbf{x}) \cdot \mathbf{L}) \rightarrow d \text{ s.t. } d = \sigma_1 f(\mathbf{x}) + \sigma_0$

Generalization to Reg-FE

- so far, we used σ_1 = pad for fixed message μ (and σ_0 not used at all)
- more general we can
 - encode data in σ_1
 - **attribute-weighted sums** functionalities [C:AGW20]
 - use σ_0 as masking term for other Reg-FE functionalities
 - **attribute-based** functionalities (AB-AWS, AB-QF)

Linear Garbling

$\text{Garble}(f, \sigma_0, \sigma_1; \mathbf{r}) \rightarrow \mathbf{L} = (\mathbf{L}_1 \| \dots \| \mathbf{L}_m)$

$\text{Eval}(f, \mathbf{x}, \ell := (1, \mathbf{x}) \cdot \mathbf{L}) \rightarrow d \text{ s.t. } d = \sigma_1 f(\mathbf{x}) + \sigma_0$

Generalization to Reg-FE

- so far, we used σ_1 = pad for fixed message μ (and σ_0 not used at all)
- more general we can
 - encode data in σ_1
 - **attribute-weighted sums** functionalities [C:AGW20]
 - use σ_0 as masking term for other Reg-FE functionalities
 - **attribute-based** functionalities (AB-AWS, AB-QF)
- this yields Reg-FE instantiations for many functionalities known for pairing-based FEs (exception: *unbounded* linear and quadratic functions [EC:T23])

Linear Garbling

$\text{Garble}(f, \sigma_0, \sigma_1; \mathbf{r}) \rightarrow \mathbf{L} = (\mathbf{L}_1 \parallel \dots \parallel \mathbf{L}_m)$

$\text{Eval}(f, \mathbf{x}, \ell := (1, \mathbf{x}) \cdot \mathbf{L}) \rightarrow d \text{ s.t. } d = \sigma_1 f(\mathbf{x}) + \sigma_0$

Existing Reg-FE beyond Predicates

Work	Function Class	Assumption	Remarks
[AC:FFM ⁺ 23, AC:DPY24]	general	iO, SSB hash functions	
[AC:DPY24]	AB-IP	GGM	LSSS access policies
[AC:BLM ⁺ 24]	IP, weak QF	<i>q</i> -type, GGM	
[EC:ZLZ ⁺ 24]	IP, QF	bilateral MDDH	
[EPRINT:PS25]	AB-AWS	bilateral MDDH	ABPs on public inputs
[this work]	AB-AWS, AB-QF	bilateral MDDH	ABPs or logspace TMs on public inputs

Existing Reg-FE beyond Predicates

Work	Function Class	Assumption	Remarks
[AC:FFM ⁺ 23, AC:DPY24]	general	iO, SSB hash functions	
[AC:DPY24]	AB-IP	GGM	LSSS access policies
[AC:BLM ⁺ 24]	IP, weak QF	q -type, GGM	
[EC:ZLZ ⁺ 24]	IP, QF	bilateral MDDH	
[EPRINT:PS25]	AB-AWS	bilateral MDDH	ABPs on public inputs
[this work]	AB-AWS, AB-QF	bilateral MDDH	ABPs or logspace TMs on public inputs

previously, logspace TMs unknown even for Reg-ABE

Conclusion

- adapt **general paradigm** for ABE and FE: plain \rightarrow registered setting
- registered analogs of many pairing-based ABEs and FEs, e.g.

Reg-ABE for ABPs [AC:ZZGQ23] and **logspace TMs** \leftrightarrow [EC:LL20])

Reg-FE for **attribute-based** quadratic functions \leftrightarrow [TCC:W20])

Reg-FE for **(attribute-based) attribute-weighted sums** \leftrightarrow [AC:DP21, AC:DPT22, C:ATY23])

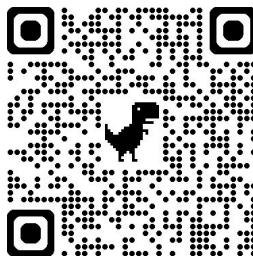
Conclusion

- adapt **general paradigm** for ABE and FE: plain \rightarrow registered setting
- registered analogs of many pairing-based ABEs and FEs, e.g.

Reg-ABE for ABPs [AC:ZZGQ23] and **logspace TMs** \leftrightarrow [EC:LL20])

Reg-FE for **attribute-based** quadratic functions \leftrightarrow [TCC:W20])

Reg-FE for **(attribute-based) attribute-weighted sums** \leftrightarrow [AC:DP21, AC:DPT22, C:ATY23])



ia.cr/2025/2207

Thank you! :-)