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Arithmetic Key Garbling Scheme [EC:LL20]
2-step garbling procedure:
1. given f and secret inputs g9, o, output linear label functions Ly(X), ..., L,(X) represented by their
coefficient vectors L = (L[1],...,L[m])
2. given public input x, output label vector £ = x - L = (L1(x),. .., Ln(x))

evaluation: given f,x,£, output d = o1 f(x) + o9

simulation: given f,x,d, output 7 ~ ¢
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Framework for Registered ABE
the dream...

“
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linear garbling

llnear garbllng

Challenges in the registered setting.
(1) Registered IPFE supporting registration of vectors over group unknown

(2) Sampling of user-specific randomness

e key generation performed by (potentially malicious) users
e aggregation is deterministic
e encryption time is polylogarithmic in number of users (compactness)

Linearity to the rescue. L = (09, 01,r) - L -> offline/online phase
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RFE for Pre-IP (Batch variant)

e setup: given matrices {[P;]2};er), Output crs

e user key generation: output (pk, sk)

e aggregation: given crs and public key-matrix tuples {(pk;, Vi) }icir), output mpk and {hsk;}c(z
e encryption: given mpk and a matrix [U]y, output ct

e decryption: givensk;, hsk; and ct, output [D]y = [UP;V,];

Theorem. Assuming bilateral MDDH on pairings, there exists a SIM-secure RFE scheme for Pre-IP.

Proof. (see the paper, based on IND-secure RFE for IP of [EC:ZLZ*24])
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Arithmetic Key Garbling Scheme [EC:LL20] e linearin secret i.nput and randomness
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How to pick the matrices?

Iy ® (04,0,04,1,Ti) 2

What about Turing machines? 4 bV 7
Problem: chape of ( and r depends on dile = [uPVi]e = [(#’ + 8030, (X ® (8040, 5041, Sri)) ' Z)]

input length, runtime and cpace

-> only known during encryption +(

Labels are

Arithmetic Key Garbling Scheme [EC:LL20] e linearin secret i.nput and randomness
e [inearin public input

Garble(f,00,01;r) - L = (L[1],...,L[m])
Eval(f,x,£:=x-L) —»d St d=o01f(x)+ 0 [[ — (x ® (0-0,0-1,1.)) L ]

AN

Pal, Schadlich

A General Framework for RFE via User-Specific Pre-Constraining 10/15




Arithmetization of TM Computations

e consider TM M = (Q,yacc,d) and denote by (N, S, T) the input length, space and runtime
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e setofinternal configurations C = [N] x [S] x {0,1}® x [@] with initial configuration ¢y = (1,1,0g,1)
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e define transition matrix T(x) € Z$¢ as

()[ A {1 if c —p

0 otherwise

07: (é:\/r y

T

e wehave T(x)-e/ =e/ and more general

.. S0 we only need to garble matrix multiplication
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Arithmetic Key Garbling for Logspace TMs [EC:LL20]

e garbling: sample ro,ry,...,rr < Z$and output label functions

Lint(x) = 09 + 10 - €,
Lt(X) = —ry 1 +Ts- T(X)
Lrii(x)=-rr+o01- (1 ®yac)
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Decomposition of the Labels
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Pal, Schadlich

A General Framework for RFE via User-Specific Pre-Constraining 12/15




Decomposition of the Labels

e garbling: sample rg,ry,...,rr <y Zg and output label functions

R

Linit(x) = 09+ 10 - €,
Lt(X) = —ry1+Ts- T(X)
Lri1(x)=-rr+o01- (1 ® Yacc)

. S
o idea: set r, =1 ®r; where ry, <5 ZNEONT gng g g 79
Pal, Schadlich A General Framework for RFE via User-Specific Pre-Constraining 12/15




Decomposition of the Labels

e garbling: sample rg,ry,...,rr <y Zg and output label functions

R

Linit(x) = 09+ 10 - €,
Lt(X) = —ry1+Ts- T(X)
Lri1(x)=-rr+o01- (1 ® Yacc)
[V]x[$]>{0,1}%

e idea: set ry=r,; ®r; where ry; <3 Zp and rg <—g ZLQ]

e decomposition of the labels:

Linit(x) = s - 09 + (rxo ®1rf)[1,1,0g,1]

Pal, Schadlich

A General Framework for RFE via User-Specific Pre-Constraining 12/15




Decomposition of the Labels

e garbling: sample rg,ry,...,rr <y Zg and output label functions

R

Linit(x) = 09+ 10 - €,
Lt(X) = —ry1+Ts- T(X)
Lri1(x)=-rr+o01- (1 ® Yacc)
[V]x[$]>{0,1}%

e idea: set ry=r,; ®r; where ry; <3 Zp and rg <—g ZLQ]

e decomposition of the labels:

Linit(x) = 500+ (rx0 ®1f)[1,1,05,1] = s- 09 + ryo[1,1,0g] - r¢[1]

Pal, Schadlich

A General Framework for RFE via User-Specific Pre-Constraining 12/15




Decomposition of the Labels

e garbling: sample rg,ry,...,rr <y Zg and output label functions

R

Linit(x) = 09+ 10 - €,
Lt(X) = —ry1+Ts- T(X)
Lri1(x)=-rr+o01- (1 ® Yacc)

o idea: set r; =1 ®@r; Where ry, g ZNVEXOUT gng p o 719

e decomposition of the labels:
VAR
Linit(x) = s+ 00 + (reo ®1¢)[1,1,05,1] = 5- 09 +1yp[1,1,05] - r¢[1]
RO A

Pal, Schadlich

A General Framework for RFE via User-Specific Pre-Constraining 12/15




Decomposition of the Labels

e garbling: sample rg,ry,...,rr <y Zg and output label functions

R

Liit(x) =09 +1p - eCTO v
Lt(X) = —ry1+Ts- T(X)
Lri1(x)=-rr+o01- (1 ® Yacc)

o idea: set r; =1 ®@r; Where ry, g ZNVEXOUT gng p o 719

e decomposition of the labels:
VAR
Linit(x) = s+ 00 + (reo ®1¢)[1,1,05,1] = 5- 09 +1yp[1,1,05] - r¢[1]
R_ p

!

Pal, Schadlich

A General Framework for RFE via User-Specific Pre-Constraining 12/15




Decomposition of the Labels

e garbling: sample rg,ry,...,rr <y Zg and output label functions

R

Liit(x) =09 +1p - eCTO v
Lt(X) = —ry1+Ts- T(X)
Lri1(x)=-rr+o01- (1 ® Yacc)

o idea: set r; =1 ®@r; Where ry, g ZNVEXOUT gng p o 719

e decomposition of the labels:

LT+1[k7 j7 w, Q](X) - _(rX,T ® rf)[ga q] +8-01- (1 ® yacc) [27 Q]
-

Pal, Schadlich

A General Framework for RFE via User-Specific Pre-Constraining 12/15




Decomposition of the Labels

e garbling: sample rg,ry,...,rr <y Zg and output label functions

R

Liit(x) =09 +1p - eCTO v
Lt(X) = —ry1+Ts- T(X)
Lri1(x)=-rr+o01- (1 ® Yacc)

o idea: set r; =1 ®@r; Where ry, g ZNVEXOUT gng p o 719

e decomposition of the labels:

Lr1[k, j,w,ql(x) = —(rxr ®rf)[c,q] +5-01 (1 ® yacc) [c,q] = —rx7[c] - relg] + 5+ 01 Yace[d]
—

Pal, Schadlich

A General Framework for RFE via User-Specific Pre-Constraining 12/15




Decomposition of the Labels

e garbling: sample rg,ry,...,rr <y Zg and output label functions

R

Liit(x) =09 +1p - eCTO v
Lt(X) = —ry1+Ts- T(X)
Lri1(x)=-rr+o01- (1 ® Yacc)

o idea: set r; =1 ®@r; Where ry, g ZNVEXOUT gng p o 719

e decomposition of the labels:

g N4

LT+1[k7 Js W, Q](x) - _(rx,T ® I'f)[g, Q] +8-01- (1 ® yacc) [Ea Q] = _rX,TE] ’ rf[Q] +s-01- Yacc[Q]

\p

!

Pal, Schadlich

A General Framework for RFE via User-Specific Pre-Constraining 12/15




Decomposition of the Labels

e garbling: sample rg,ry,...,rr <y Zg and output label functions

D
\_
Liit(x) =09 +1p - eCTO v
Lt(X) = —ry1+Ts- T(X)
Lri1(x)=-rr+o01- (1 ® Yacc) v
o idea: set r; =1 ®@r; Where ry, g ZNVEXOUT gng p o 719

e decomposition of the labels:

g N4

LT+1[k7 Js W, Q](x) - _(rx,T ® I'f)[g, Q] +8-01- (1 ® yacc) [Ea Q] = _rX,TE] ’ rf[Q] +s-01- Yacc[Q]

\p

!

Pal, Schadlich

A General Framework for RFE via User-Specific Pre-Constraining 12/15




Decomposition of the Labels
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Decomposition of the Labels

e garbling: sample rg,ry,...,rr <y Zg and output label functions
0N

\_
Liit(x) =09 +1p - eCTO v
Lt(X) = —ry1+Ts- T(X)
Lri1(x)=-rr+o01- (1 ® Yacc) v
o idea: set r; =1 ®@r; Where ry, g ZNVEXOUT gng p o 719
e decomposition of the labels:
- u
g
Lile, q(x) = —(rxe-1 @ 15) [c, q] + ((rxz @ x5) - T(X))[c, q] = —rxp-1[c] - velg] + ((rx¢ ® 7f) - T(%))[c, 4]
£\
p
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Decomposition of the Labels

e garbling: sample rg,ry,...,rr <y Zg and output label functions

0N
N
Liit(x) =09 +1p - eCTO v
Li(x) = —ry_1 +1; - T(x) X
Lri1(x)=-rr+o01- (1 ® Yacc) v
o idea: set r; =1 ®@r; Where ry, g ZNVEXOUT gng p o 719
e decomposition of the labels:
- U
g
Lt[E? QJ(X) - _(rx,t—l ® I‘f)[g, Q] + ((rx,t X rf) : T(X)) [Ea Q] Tyt I[J rf[‘]] + rxt ® I'f La q]

p/ H/—J
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Block Structure of Transition Matrix

® transition matrix T(x)[c’,cA:

{1 if 6(q, x[k], w[j]) = (¢', Ww'ls], K" — k,j" — j), w[# j] = w'[# J]
R

0 otherwise
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Block Structure of Transition Matrix

o tansivon matex Tl {(1) 80,506, wh) = (s WL K = k' = ), wi 1 =l
‘/ﬁ \\ otherwise

e’ = [k,’jf w) 7)) ¢ = [k,j) w, 9)

e consider Q x Q blocks T(x)[(K, 7, w', ), (k,j,w, )]
— ——
4 4

éﬂ‘é/océ colvmn Cc——(k, J w), _)

block row (e=(k j; w), _)
T(X) = [ ] Q/
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Block Structure of Transition Matrix

® transition matrix T(x)[c’,c;: {(1) i)ftfl(e?wxi[slﬂ,“’[j]) = (¢, w'[j, k' — k,§" — j), w[# j] = W'[# ]]
\_

= w q) =k wq)
e consider Qx Q blocks T(x)[(K,5,w',_), (k, 4, w,_)]
—— ——
14 c

-> either zero matrix
-> or “transition block” in B = {Bw,w7w/,Ak,Aj|m, w,w' € {0,1}, Ak,Aj € {O,il}}

e observation: each B, . axa; appears at most once per “block column”

decomposition of the last term: h
(ret ®16) - T(x)[(-5 ), (¢ 9)]

\_ J
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Block Structure of Transition Matrix

® transition matrix T(x)[c’,c;: {(1) i)fti(eqr,wxi[:j,w[j]) = (¢, w'[j, k' — k,§" — j), w[# j] = W'[# ]]
\_

e'= (k] w) q) c=(kj w q)

e consider Q x Q blocks T(x)[(K, 7, w', ), (k,j,w, )]
— —
4 4

-> either zero matrix
-> or “transition block” in B = {Bgw.uw akaj|z, w,w' € {0,1}, Ak,Aj € {0,+1}}

e observation: each B, .. axa; appears at most once per “block column”, position independent of x

decomposition of the last term: h
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Generalization to RFE

e sofar, we used oy as a pad for (a fixed message) p and o1 as a masking term

Arithmetic Key Garbling Scheme [EC:LL20]

Garble(f,0¢0,01;r) — L = (L[1],...,L[m])
Eval(f,x,£:= (1,x)-L) > d St d=o01f(x)+ 0
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Generalization to RFE

e sofar, we used o as a pad for (a fixed message) . and o as a masking term
e more general, we can

o encode datain oy
-> attribute-weighted sums functionalities

o use oy as pad for any other (independently computed) RFE functionality
-> attribute-based functionalities (AB-AWS, AB-QF)

Arithmetic Key Garbling Scheme [EC:LL20]

Garble(f,0¢0,01;r) — L = (L[1],...,L[m])
Eval(f,x,£:= (1,x)-L) > d St d=o01f(x)+ 0
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Conclusion

e classical FE provides security against malicious user but needs to trust authority
e registered FE circumvents the need for trusted authority
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Conclusion

classical FE provides security against malicious user but needs to trust authority
registered FE circumvents the need for trusted authority

this work: adapt modular framework from classical to registered setting to obtain
o RABE for logspace TMs
o RFE for AB-AWS and AB-QF

on-going work:
o realize framework from lattices (evasive RFE for Pre-IP + noisy linear garbling scheme)

open problems:
o (pairings) adaptive security, compression of CRS
o (lattices) weaker, falsifiable assumptions
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