A General Framework for Registered Functional
Encryption via User-Specific Pre-Constraining

Tapas Pal’ Robert Schadlich?
November 6, 2025

TKarlsruhe Institute of Technology, KASTEL Security Research Labs
2 DIENS, Ecole normale supérieure, PSL University, CNRS, Inria

&‘(IT dlds | PSLk @ lreeia—

=

1/15

Functional Encryption (FE) [Tcc:Bsw11]

Setup(1?) — (mpk, msk) ﬁ

Q @ @

Pal, Schadlich

A General Framework for RFE via User-Specific Pre-Constraining 2/15

Functional Encryption (FE) [Tcc:Bsw11]

mpk
Setup(1*) — (mpk, msk) ﬁ P z Enc(mpk, z) — ct
)

Q @ @

Pal, Schadlich

A General Framework for RFE via User-Specific Pre-Constraining 2/15

Functional Encryption (FE) [Tcc:Bsw11]

Setup(1?) — (mpk, msk) ﬁ mpk
B S

fi fo f3

Q @ @

Pal, Schadlich

T

74\

A General Framework for RFE via User-Specific Pre-Constraining

Enc(mpk, z) — ct

2/15

Functional Encryption (FE) [Tcc:Bsw11]

mpk
Setup(1*) — (mpk, msk) P x Enc(mpk, z) — ct
7,
KeyGen(msk, f) — sky
fi f2 f3
Skf1

Pal, Schadlich

A General Framework for RFE via User-Specific Pre-Constraining 2/15

Functional Encryption (FE) [Tcc:Bsw11]

k
Setup(1*) — (mpk, msk) TP P x
J
KeyGen(msk, f) — sky

1

Enc(mpk, z) — ct

fs

A
%@ K/\?/

L
@ (h)
& TR

O

Dec(sk;, hsk;, ct) — fi(z)

Pal, Schadlich

A General Framework for RFE via User-Specific Pre-Constraining

2/15

Functional Encryption (FE) [Tcc:Bsw11]

mpk
Setup(1*) — (mpk, msk) P x Enc(mpk, z) — ct
7,
KeyGen(msk, f) — sky

f‘ t §ecar/z‘y.7 | |
pole |e

Skf2

Skf3

Dec(sk;, hsk;, ct) — fi(z)

Pal, Schadlich

A General Framework for RFE via User-Specific Pre-Constraining 2/15

Setup(1?) — (mpk, msk)
KeyGen(msk, f) — sky

f

Pal, Schadlich

Functional Encryption (FE) [Tcc:Bsw11]

14

f2
sk f

£

adv

mpk
. z Enc(mpk, z) — ct

A

L £
\

@ @ @ @ (AE (A

e TR TR

ercary obtaing secret keys: Dec(ski, hsk;, ct) — fi(z)

Yol o o

A General Framework for RFE via User-Specific Pre-Constraining 2/15

Setup(1?) — (mpk, msk)
KeyGen(msk, f) — sky

f

Pal, Schadlich

Functional Encryption (FE) [Tcc:Bsw11]

14

fa

adv

mpk
. z Enc(mpk, z) — ct

A

ercary obtaing secret keys: Dec(ski, hsk;, ct) — fi(z)

f) %@ f) ct reveals nothing about x except

Function values ﬂ(x}, Fz[x) and f;(x)

A General Framework for RFE via User-Specific Pre-Constraining 2/15

Functional Encryption (FE) [tcc:Bsw]

key-eccrow problem: msk reveals f(x) for all £ :(

) mpk
Setup(1*) — (mpk, msk) P x Enc(mpk, z) — ct
7,
KeyGen(msk, f) — sky

|
@ Q@ @ mmm
TR TR W

Dec(sk;, hsk;, ct) — fi(z)

Pal, Schadlich

A General Framework for RFE via User-Specific Pre-Constraining 2/15

Functional Encryption (FE) [tcc:Bsw]

key-eccrow problem: msk reveals f(x) for all £ :(

Setup(1*) — (mpk, msk))
KeyGen(msk, f) — sky
1 t e multi-authority FE
e registration-based FE
Skf1 Skf2 Skf3
y L |
\J

Pal, Schadlich

Enc(mpk, z) — ct
Solutions

r——m —— - —— -
I
—

| fz(w) ' | fs(m) |

1
J — —

Dec(sk;, hsk;, ct) — fi(z)

A General Framework for RFE via User-Specific Pre-Constraining 2/15

Registered Functional Encryption (RFE) [AC:FFM+23]

Setup(1*) — crs crs

Q Q@ @

pky,skq pksy, sk pks, sk3

KeyGen(crs,i) — (pk;, sk;)

Pal, Schadlich

A General Framework for RFE via User-Specific Pre-Constraining 3/15

Registered Functional Encryption (RFE) [AC:FFM+23]

Setup(1*) — crs crs
A
pk17 fl pk2’ f2 pk37 f3
pky, skq pky, sko pks, sk

KeyGen(crs,i) — (pk;, sk;)

Pal, Schadlich

A General Framework for RFE via User-Specific Pre-Constraining 3/15

Registered Functional Encryption (RFE) [Ac:FFM+23]

Setup(1*) — crs

Crs

*A

pkl,fl pk2’ f2

=)

mpk

RegPK(crs, pk;, f;) — (mpk, aux)

pk37 f3

Q Q@ @

pky,skq pksy, sk

pk3’ Sk3

KeyGen(crs,i) — (pk;, sk;)

Pal, Schadlich

T

74\

A General Framework for RFE via User-Specific Pre-Constraining

Enc(mpk, z) — ct

3/15

Registered Functional Encryption (RFE) [Ac:FFM+23]

Setup(1*) — crs

Crs

*A

pkl,fl ka,fE

=)

mpk

RegPK(crs, pk;, f;) — (mpk, aux)

pk37j%

Q Q@ @

pky,skq pksy, sk

pk3’5k3

KeyGen(crs,i) — (pk;, sk;)

Pal, Schadlich

Sk1

. z Enc(mpk, z) — ct
Sk2 Sk3
\/
@ (A (A

Hia ___J@ i J@

Dec(sk;, ct) — fi(z)

A General Framework for RFE via User-Specific Pre-Constraining

3/15

Registered Functional Encryption (RFE) [AC:FFM+23]

key curator ic determinictic & holds no secret => key-eccrow problem resolved!

)

\ mpk
Setup(1") — crs crs g T Enc(mpk, z) — ct
2
[RegPK(crs, pk;, f;) — (mpk, aux)

pk17 fl pk2) f2 pk?n f3

Sk1 Sk2 Sk3

v

@ (hE (A
2 < I (7

pky, sk pky, ska pks, sks Dec(sk;, ct) — fi(z)

KeyGen(crs,i) — (pk;, sk;)

Pal, Schadlich

A General Framework for RFE via User-Specific Pre-Constraining 3/15

Registered Functional Encryption (RFE) [AC:FFM+23]

key curator ic determinictic & holds no secret => key-eccrow problem resolved!

)

mpk

Setup(1*) — crs crs g T Enc(mpk, z) — ct
2
[RegPK(crs, pk;, f;) — (mpk, aux)

pkl) fl pk2) f2 pk?n f3

Sk1 Sk2 Sk3

@ (hE) (fE)]
TR TR W

pky, sk pky, ska pks, sks Dec(sk;, ct) — fi(z)

KeyGen(crs,i) — (pk;, sk;) compactunecs: [mpk], [ct] = poly(log () where (=Fucers

Pal, Schadlich

A General Framework for RFE via User-Specific Pre-Constraining 3/15

Registered Functional Encryption (RFE) [AC:FFM+23]

key curator ic determinictic & holds no secret => key-eccrow problem resolved!

)

mpk

Setup(1*) — crs crs & . T Enc(mpk, z) — ct
A
[RegPK(crs, pk;, f;) — (mpk, aux)
pk17 fl pk2) f2 pk?n f3
hSk1 h5k2 hSk3 Skl, hSk1 Sk2, hSkz Sk3, hSk3

\/
G, e
® ®)
pk, skq pky, sk pks, sk Dec(sk;, hsk;, ct) — fi(z)

KeyGen(crs, 1,) — (pki, Ski) compactnecs: [mpkl, [ct/, /As'él,/ = ,bo/y(/og () where (=Fucers

Pal, Schadlich

A General Framework for RFE via User-Specific Pre-Constraining 3/15

Registered Functional Encryption (RFE) [AC:FFM+23]

key curator ic determinictic & holds no secret => key-eccrow problem resolved!

)

mpk

Setup(1*) — crs crs = . T Enc(mpk, z) — ct
A
byt rstaton :\ RegPK(crs, pk;, i) — (mpk, aux)
pk17 fl pk?n f3
h5k2 hSk3 Skl, hSk1 Sk2, hSkz Sk3, hSk3

\/
G, e
® ®)
pk, skq pky, sk pks, sk Dec(sk;, hsk;, ct) — fi(z)

KeyGen(crs, 1,) — (pki, Ski) compactnecs: [mpkl, [ct/, /As'él,/ = ,bo/y(/og () where (=Fucers

Pal, Schadlich

A General Framework for RFE via User-Specific Pre-Constraining 3/15

Registered Functional Encryption (RFE) [AC:FFM+23]

key curator ic determinictic & holds no secret => key-eccrow problem resolved!

Setup(1*) — crs

1-by-1 registration \

Crs

v 4

pkl) fl

@ ® @

pk17 Skl

update if required

pk27 Sk2

)

>

mpk

. z Enc(mpk, z) — ct
RegPK(crs, pk;, f;) — (mpk, aux)
Update(crs, aux, pk;) — hsk; | |
Pk3, f3
hSk3 Skl, hSk1 Sk2, hSk2 Sk3, hSk3
A NS €.
1 J1I\Z | fa(z) ! | f3(z

pk39 Sk3

KeyGen(crs,i) — (pk;, sk;)

Pal, Schadlich

Dec(sk;, hsk;, ct) — fi(z)

compactnecs: [mpkl, [ct/, /As'él,/, #u,bdafeg = ,bo/y(/ag () where (=Hugcers

A General Framework for RFE via User-Specific Pre-Constraining

3/15

Setup(1*,L) — crs

pk17f1

hSk1

pk27fb

hSk2

mpk

Slotted Registered Functional Encryption (SRFE)

t

hSk3

pk37j3

@ @ @

pklaSkl

Pal, Schadlich

pk275k2

pk3’5k3

KeyGen(crs, i) — (pk;, sk;)

_ T é Enc(mpk, z) — ct
Skl,hSkl Sk2,h5k2 Sk3,h5k3
(., \ €. . €.,
 fi(z)! fa(@)) f3(2)

g g g

Dec(sk;, hsk;, ct) — fi(z)

compactnecs: [mpk], [ct], /Arél,/ = poly(log () where (=Hucers

A General Framework for RFE via User-Specific Pre-Constraining

4/15

Pal, Schadlich

Slotted Registered Functional Encryption (SRFE)

mpk

Setup(1*,L) — crs crs > - é Enc(mpk, z) — ct
7-chot registration A
\W * A t Agg(crs, {(pk;, fi)}icir) — (mpk, {hsk;}iciz)) | |
pk17 fl pk27 f2 pk37 f3
hSk1 hSk2 hSk3 Skl, hSk1 Sk2, hSk2 Sk3, h5k3
@S, @S @S,
|f1(-'3),I |f2(3lc)}I I 3(z) !
— —_—— A e
(@ @
pkla sk pk27 sk pk?n Sk3

KeyGen(crs, i) — (pk;, sk;)

Dec(sk;, hsk;, ct) — fi(z)

compactnecs: [mpk], [ct], /Arél,/ = poly(log () where (=Hucers

A General Framework for RFE via User-Specific Pre-Constraining

4/15

Slotted Registered Functional Encryption (SRFE)

mpk

Setup(1*,L) — crs crs . T é Enc(mpk, z) — ct
7,
7-chot registration A
\v * A t Agg(crs, {(pki, /i) }iciz)) — (mpk, {hski}ic(z)) I |
pk17 fl pk27 f2 o updates pk37 f3
§ \&
hSk1 hSk2 hSk3 Skl, hSk1 Sk2, hSk2 Sk3, h5k3
@S, @S (. v,
|f1(-'3),I |f2(3lc)}I |f3(_))I
@ @
pky,sky pks, ska pks, sks Dec(sk;, hsk;, ct) — fi(x)
KeyGen(crs, i) — (pk;, sk;) compactnecs: [mpk], [ct], /Arél,/ = poly(log () where (=Hucers
Pal, Schadlich A General Framework for RFE via User-Specific Pre-Constraining 4/15

Slotted Registered Functional Encryption (SRFE)

[HIWW23]: cRFE => RFE (‘powerc-of-two compiler”)

S mpk
Setup(1*,L) — crs crs . T é Enc(mpk, z) — ct
7,
7-chot registration A
\W * A t Agg(crs, {(pk;, fi)}ieir)) — (mpk, {hsk;}icr)) | |
pky, f1 pky, f2 no updates pks, f3
§ \&
hSk1 hSk2 hSk3 Skl, hSk1 Skz, hSk2 Sk3, h5k3
@S, @S (. v,
@ @ @ L TR TN
pky,sky pks, ska pks, sks Dec(sk;, hsk;, ct) — fi(x)
KeyGen(crs, i) — (pk;, sk;) compactnecs: [mpk], [ct], /Arél,/ = poly(log () where (=Hucers
Pal, Schadlich A General Framework for RFE via User-Specific Pre-Constraining 4/15

Slotted Registered Functional Encryption (SRFE)

mpk

Setup(1*,L) — crs crs > T Enc(mpk, z) — ct
A
A
* A t Agg(crs, {(pk;, fi) }ieir) — (mpk, {hsk;}icir)) | |
pk17 fl pk2’ f2 pk37 f3
hsk, hsky hsks skq, hsky sko, hsky sks, hsks
@S, @S @S,
|f1)J |f2(313))I I 3(_))'
(@ (@)
Pky, ski Pk, skz Pk, sks Dec(sk;, hsk;, ct) — fi(z)
KeyGen(crs, i) — (pk;, sk;)
Pal, Schadlich A General Framework for RFE via User-Specific Pre-Constraining 4/15

Slotted Registered Functional Encryption (SRFE)

\ mpk
Setup(1*,L) — crs crs e T é Enc(mpk, z) — ct
7,
=)
* A t Agg(crs, {(pk;, fi)}ieir)) — (mpk, {hsk;}icr)) | |
pk17 fl pk27 f2 pk37 f3
hsk, hsky hsks skq, hsky sko, hsky sks, hsks
@S, @S @S,
@) hE))]
(@ (@)
Pky, ski Pk, skz Pk, sks Dec(sk;, hsk;, ct) — fi(z)
KeyGen(crs, i) — (pk;, sk;) gl .
’ ecur:z‘y?
Pal, Schadlich A General Framework for RFE via User-Specific Pre-Constraining 4/15

Slotted Registered Functional Encryption (SRFE)

mpk
Setup(1*,L) — crs crs > z Enc(mpk, z) — ct
N
A
* A t Agg(crs, {(pk;, fi) }ic(r) — (mpk, {hski}icir)) | |
pk17 fl pk2’ f2 pk37 f3
hsk, hsky hsks s_kl, hsk; sks, hsko s_k3, hsks
r —— - ——
& @ & g W
pky,sky Pk, sk & pks, sks Dec(sk;, hsk;, ct) — fi(z)
j honecst vser
corrupt or .
maliciouc vser KeyGen(crs,z) — (pki75ki) g’ec“r;fy 7
Pal, Schadlich A General Framework for RFE via User-Specific Pre-Constraining 4/15

Slotted Registered Functional Encryption (SRFE)

N mpk
Setup(1”, L) — crs crs s T Enc(mpk, z) — ct
D
Ay
* A t Agg(crs, {(pk;, fi) }iez) — (mpk, {hsk;}ic(z)) | |
pk17 fl pk2’ f2 pk37 f3
hsk1 hsk, hsks S_kl, hsky sks, hsks S_k3, hsks

\/
(i) fa(2) { fo(a)!
Qe & ® e

nothing revealed :)

L)
corrupt or / honest bser

ciouc b KeyGen(crs, i) — (pk;, sk;) .
malicious vser ? g’ecurlz.‘y.7
Pal, Schadlich A General Framework for RFE via User-Specific Pre-Constraining 4/15

Slotted Registered Functional Encryption (SRFE)

N mpk
Setup(1”, L) — crs crs s T Enc(mpk, z) — ct
D
Ay
* A t Agg(crs, {(pk;, fi) }iez) — (mpk, {hsk;}ic(z)) | |
pk17 fl pk2’ f2 pk37 f3
hsk1 hsk, hsks S_kl, hsky sks, hsks S_k3, hsks

(- R
I () fz(m)éq 1 f3(2))
@ @ @ Function value _;4_) - [% \ l%

nothing revealed :)

isclo. ,/: k
Pk1>5_k1 pky, sk (& pk3,s_k3, diselosed! :(Dec(sk;, hsk;, ct) — fi(z)
JA)

honest vser

corrupt or /

ciouc b KeyGen(crs, i) — (pk;, sk;) .
malicious vser ? g’ecurlz.‘y.7
Pal, Schadlich A General Framework for RFE via User-Specific Pre-Constraining 4/15

Special Case: Registered ABE

mpk
Setup(1*,L) — crs crs P x Enc(mpk, z, u) — ct,
J H

[
* A t Agg(crs, {(pk;, fi) }iei) — (mpk, {hski}iciz)) | |
pky, f1 pky, f2 pks, f3
h5k1 hSk2 hSk3 Skl, hSk1 Skz, hSk2 Sk3, hSk3
2@ e TR
[f1(2) o fz(x),@ ' fs(a) '
pkla sk pk27 sk pk3’ Sk3

1 otherwise

Dec(sk;, hsk;, ct) — {.U if f;(z) =0

KeyGen(crs, i) — (pk;, sk;)

Pal, Schadlich

A General Framework for RFE via User-Specific Pre-Constraining 5/15

Framework for Non-Registered ABE

palrlng based) IPFE

llnear garbllng

Pal, Schadlich

A General Framework for RFE via User-Specific Pre-Constraining 6/15

Framework for Non-Registered ABE

palrlng based) IPFE

llnear garbllng

Inner-Product Functional Encryption

{f% ict([u],)
—» [u'v];
%@ isk([v]2)

A General Framework for RFE via User-Specific Pre-Constraining 6/15

Pal, Schadlich

Framework for Non-Registered ABE

alrlng based) IPFE

llnear garbllng

Arithmetic Key Garbling Scheme [EC:LL20]
2-step garbling procedure:
1. given f and secret inputs g9, o, output linear label functions Ly(X), ..., L,(X) represented by their
coefficient vectors L = (L[1],...,L[m])
2. given public input x, output label vector £ = x - L = (L1(x),. .., Ln(x))

evaluation: given f,x,£, output d = o1 f(x) + o9

simulation: given f,x,d, output 7 ~ ¢

Pal, Schadlich

A General Framework for RFE via User-Specific Pre-Constraining 6/15

Framework for Non-Registered ABE

Ctx Y iCt([(/‘L:‘g,s'x)]l)

—_— Lu, + s U'O]t, {[X * 8- L[j”t}je[m]

Skf 2? iSk([(lao'Os0)]2)’{iSk([(OaL[j])]2)}j€[m] /Q

Evall...) -> Flx) - ¢0_ +¢0,

Arithmetic Key Garbling Scheme [EC:LL20]
Garble(f,00,01;r) - L = (L[1],...,L[m])
Eval(f,x,£:=x-L) > d St d=o1f(x)+ 09

Inner-Product Functional Encryption

(TTTY

Sim(f,x,d) = £ St I~ ¢

(inearity:
° labelc linear in (1) e, v, and (2) x

° evalvation linear in labele

R ict([u]q)
B " .
2@ isk([v]2) e

Pal, Schadlich

A General Framework for RFE via User-Specific Pre-Constraining 7/15

Framework for Non-Registered ABE

Security

1. security of IPFE
2. DDH
3. security of AKGS

Ctx [iCt([(/‘L:'s,s'x)]l)

—_— Lu, + s U'O]t, {[X * 8- L[j]]t}je[m]

Skf 2? iSk([(lao'Os0)]2)’{iSk([(OaL[j])]2)}j€[m] /Q

Evall...) -> Flx) - ¢0_ +¢0,

Arithmetic Key Garbling Scheme [EC:LL20]
Garble(f,00,01;r) - L = (L[1],...,L[m])
Eval(f,x,£:=x-L) > d St d=o1f(x)+ 09

Inner-Product Functional Encryption

Sim(f,x,d) = £ St f~1¢

Cl’hear/fy:
° labele linear in (1) O, v, and (2) x

° evalvation linear in labele

2? isk([v]2)

Pal, Schadlich

A General Framework for RFE via User-Specific Pre-Constraining 7/15

Framework for Registered ABE

——

llnear garbllng

Pal, Schadlich

A General Framework for RFE via User-Specific Pre-Constraining 8/15

Framework for Registered ABE

the dream...

“ m

llnear garbllng llnear garbllng

Pal, Schadlich

A General Framework for RFE via User-Specific Pre-Constraining 8/15

Framework for Registered ABE

the dream...

“
_> - reglstered ABE | <=
linear garbling

llnear garbllng

Challenges in the registered setting.

(1) Registered IPFE supporting registration of vectors over group unknown

Pal, Schadlich

A General Framework for RFE via User-Specific Pre-Constraining 8/15

Framework for Registered ABE
the dream...

“
_> - reglstered ABE | <=
linear garbling

llnear garbllng

Challenges in the registered setting.

(1) Registered IPFE supporting registration of vectors over group unknown

(2) Sampling of user-specific randomness

e key generation performed by (potentially malicious) users
e aggregation is deterministic
e encryption time is polylogarithmic in number of users (compactness)

A General Framework for RFE via User-Specific Pre-Constraining 8/15

Pal, Schadlich

Framework for Registered ABE
the dream...

“
_> - reglstered ABE | <=
linear garbling

llnear garbllng

Challenges in the registered setting.
(1) Registered IPFE supporting registration of vectors over group unknown

(2) Sampling of user-specific randomness

e key generation performed by (potentially malicious) users
e aggregation is deterministic
e encryption time is polylogarithmic in number of users (compactness)

Linearity to the rescue. L = (09, 01,r) - L -> offline/online phase

Pal, Schadlich

A General Framework for RFE via User-Specific Pre-Constraining 8/15

RFE for Pre-IP (Batch variant)

e setup: given matrices {[P;]2};er), Output crs

Pal, Schadlich

A General Framework for RFE via User-Specific Pre-Constraining 9/15

RFE for Pre-IP (Batch variant)

e setup: given matrices {[P;]2};er), Output crs
e user key generation: output (pk, sk)
e aggregation: given crs and public key-matrix tuples {(pk;, Vi) }icir), output mpk and {hsk;}c(z

e encryption: given mpk and a matrix [U]y, output ct

Pal, Schadlich

A General Framework for RFE via User-Specific Pre-Constraining 9/15

RFE for Pre-IP (Batch variant)

e setup: given matrices {[P;]2};er), Output crs

e user key generation: output (pk, sk)

e aggregation: given crs and public key-matrix tuples {(pk;, Vi) }icir), output mpk and {hsk;}c(z
e encryption: given mpk and a matrix [U]y, output ct

e decryption: givensk;, hsk; and ct, output [D]y = [UP;V,];

Pal, Schadlich

A General Framework for RFE via User-Specific Pre-Constraining 9/15

RFE for Pre-IP (Batch variant)

e setup: given matrices {[P;]2};er), Output crs

e user key generation: output (pk, sk)

e aggregation: given crs and public key-matrix tuples {(pk;, Vi) }icir), output mpk and {hsk;}c(z
e encryption: given mpk and a matrix [U]y, output ct

e decryption: givensk;, hsk; and ct, output [D]y = [UP;V,];

Theorem. Assuming bilateral MDDH on pairings, there exists a SIM-secure RFE scheme for Pre-IP.

Proof. (see the paper, based on IND-secure RFE for IP of [EC:ZLZ*24])

Pal, Schadlich

A General Framework for RFE via User-Specific Pre-Constraining 9/15

How to pick the matrices?

Labels are

Arithmetic Key Garbling Scheme [EC:LL20] e linearin secret i.nput and randomness
e [inearin public input

Garble(f,00,01;r) - L = (L[1],...,L[m])
Eval(f,x,£:=x-L) —»d St d=o01f(x)+ 0 [[— (x ® (0-0,0-1,1.)) . i]

Pal, Schadlich

A General Framework for RFE via User-Specific Pre-Constraining 10/15

How to pick the matrices?

Iy ® (04,0,04,1,Ti) 2

Labels are

Arithmetic Key Garbling Scheme [EC:LL20] e linearin secret i.nput and randomness
e [inearin public input

Garble(f,00,01;r) - L = (L[1],...,L[m])
Eval(f,x,£:=x-L) —»d St d=o01f(x)+ 0 [g — (x ® (0-0’0-1,1.)) . f]

Pal, Schadlich

A General Framework for RFE via User-Specific Pre-Constraining 10/15

How to pick the matrices?

1
[u]; = [(,8,x®)], [Pila = || 040 Vi= < ~)
L;
Iy ® (040,051,75)/) |,

Correctnes’g'. RIPFE a/ecrypz‘fzm 9/8/6{&' [dz]t = [uszz]t = |:(,U, + 80,0, (X X (30'7;,0, 801, Sl‘i)) . fl)]

t

\\D Evall..) -> ,[/(x] . CO—M +¢0

1,0

Labels are

Arithmetic Key Garbling Scheme [EC:LL20] e linearin secret i.nput and randomness
e [inearin public input

Garble(f,00,01;r) - L = (L[1],...,L[m])
Eval(f,x,£:=x-L) —»d St d=o01f(x)+ 0 [[— (x ® (0-0’0-1,1.)) . f]

Pal, Schadlich

A General Framework for RFE via User-Specific Pre-Constraining 10/15

How to pick the matrices?

1
1
[u]; = [(,8,x®)], [Pila = || 040 Vi= < ~)
L;
Iy ® (040,051,75)/) |,
§’ecarity. RIPFE leakage ic [dz]g = [uszz]t = |:(,U, + Sgi,o, (X ® (3€'i,0, Sgi,l, 3{1)) . fl)] .
,2 1,2

1,2

\D indistinguichable from Sim(f x d <-§)

Labels are

Arithmetic Key Garbling Scheme [EC:LL20] e linearin secret i.nput and randomness
e [inearin public input

Garble(f,00,01;r) - L = (L[1],...,L[m])
Eval(f,x,£:=x-L) —»d St d=o01f(x)+ 0 [[— (x ® (0-0’0-1,1.)) . f]

Pal, Schadlich

A General Framework for RFE via User-Specific Pre-Constraining 10/15

How to pick the matrices?

Iy ® (04,0,04,1,Ti) 2

What about Turing machines? 4 bV 7
Problem: chape of (and r depends on dile = [uPVi]e = [(#’ + 8030, (X ® (8040, 5041, Sri)) ' Z)]

input length, runtime and cpace

-> only known during encryption +(

Labels are

Arithmetic Key Garbling Scheme [EC:LL20] e linearin secret i.nput and randomness
e [inearin public input

Garble(f,00,01;r) - L = (L[1],...,L[m])
Eval(f,x,£:=x-L) —»d St d=o01f(x)+ 0 [[— (x ® (0-0,0-1,1.)) L]

AN

Pal, Schadlich

A General Framework for RFE via User-Specific Pre-Constraining 10/15

Arithmetization of TM Computations

e consider TM M = (Q,yacc,d) and denote by (N, S, T) the input length, space and runtime

Pal, Schadlich

A General Framework for RFE via User-Specific Pre-Constraining 11/15

Arithmetization of TM Computations

e consider TM M = (Q,yacc,d) and denote by (N, S, T) the input length, space and runtime

e setof internal configurations € = [N] x [S] x {0,1}® x [@Q] with initial configuration ¢y = (1,1,0g,1)
6}\}7:17‘ tape head, working fape head, working fape, ctate)

Pal, Schadlich

A General Framework for RFE via User-Specific Pre-Constraining 11/15

Arithmetization of TM Computations

e consider TM M = (Q,yacc,d) and denote by (N, S, T) the input length, space and runtime
e setof internal configurations € = [N] x [S] x {0,1}® x [@Q] with initial configuration ¢y = (1,1,0g,1)
6}\}7:17‘ tape head, working fape head, working fape, ctate)

e define transition matrix T(x) € Z$¢ as

b 1 1 ife—pd
T(ﬁgc ’ﬁl_ {0 otherwise

e'= (k] w q) c=(j wq)

Pal, Schadlich

A General Framework for RFE via User-Specific Pre-Constraining 11/15

Arithmetization of TM Computations

e consider TM M = (Q,yacc,d) and denote by (N, S, T) the input length, space and runtime

e setof internal configurations € = [N] x [S] x {0,1}® x [@Q] with initial configuration ¢y = (1,1,0g,1)
6}\}7:17‘ tape head, working fape head, working fape, ctate)

e define transition matrix T(x) € Z$¢ as

1 ifc—pc
T(x) [c',c; - M
s 0 otherwise
e'= (k] w q) c-—(é,},wqj
e wehave T(x)-e/ =e)
Pal, Schadlich A General Framework for RFE via User-Specific Pre-Constraining 11/15

Arithmetization of TM Computations

e consider TM M = (Q,yacc,d) and denote by (N, S, T) the input length, space and runtime

e setofinternal configurations C = [N] x [S] x {0,1}® x [@] with initial configuration ¢y = (1,1,0g,1)
(/npuf tape head, working fape head, working fape, ctate)

e define transition matrix T(x) € Z$¢ as

()[A {1 if c —p

0 otherwise

07: (Afjr y

T

e wehave T(x)-e/ =e/ and more general

Pal, Schadlich

A General Framework for RFE via User-Specific Pre-Constraining 11/15

Arithmetization of TM Computations

e consider TM M = (Q,yacc,d) and denote by (N, S, T) the input length, space and runtime

e setofinternal configurations C = [N] x [S] x {0,1}® x [@] with initial configuration ¢y = (1,1,0g,1)
(/npuf tape head, working fape head, working fape, ctate)

e define transition matrix T(x) € Z$¢ as

()[A {1 if c —p

0 otherwise

07: (é:\/r y

T

e wehave T(x)-e/ =e/ and more general

.. S0 we only need to garble matrix multiplication

Pal, Schadlich

A General Framework for RFE via User-Specific Pre-Constraining 11/15

Arithmetic Key Garbling for Logspace TMs [EC:LL20]

e garbling: sample ro,ry,...,rr < Z$and output label functions

Lint(x) = 09 + 10 - €,
Lt(X) = —ry 1 +Ts- T(X)
Lrii(x)=-rr+o01- (1 ®yac)

Pal, Schadlich

A General Framework for RFE via User-Specific Pre-Constraining 12/15

Arithmetic Key Garbling for Logspace TMs [EC:LL20]

e garbling: sample ro,ry,...,rr < Z$and output label functions

Lint(x) = 09 + 10 - €,
Lt(X) = —ry 1 +Ts- T(X)
Lrii(x)=-rr+o01- (1 ®yac)

e cvaluation: given labels fint := Linit(x), {£; := L(x) }epqa), output

b+ Y, £-T(x)"" e
te[T+1]

Pal, Schadlich

A General Framework for RFE via User-Specific Pre-Constraining 12/15

Arithmetic Key Garbling for Logspace TMs [EC:LL20]

e garbling: sample ro,ry,...,rr < Z$and output label functions

Lint(x) = 09 + 10 - €,
Lt(X) = —ry 1 +Ts- T(X)
Lrii(x)=-rr+o01- (1 ®yac)

e cvaluation: given labels fint := Linit(x), {£; := L(x) }epqa), output

|n|t + Z ‘et t e =00+ 01(1 X yacc) T() 2;)
te[T+1] : ‘
\/7

teleccoping sum

Pal, Schadlich

A General Framework for RFE via User-Specific Pre-Constraining 12/15

Arithmetic Key Garbling for Logspace TMs [EC:LL20]

e garbling: sample ro,ry,...,rr < Z$and output label functions

Lint(x) = 09 + 10 - €,
Lt(X) = —ry 1 +Ts- T(X)
Lrii(x)=-rr+o01- (1 ®yac)

e cvaluation: given labels fint := Linit(x), {£; := L(x) }epqa), output

|n|t + Z ‘et t e =0y + 01(1 ® YaCC) T() ez; =o0p+o1- MlN,S,T(x)
te[T+1] . ‘
\/7

teleccoping sum

Pal, Schadlich

A General Framework for RFE via User-Specific Pre-Constraining 12/15

Decomposition of the Labels

e garbling: sample rg,ry,...,rr <y Zg and output label functions

R

Linit(x) = 09+ 10 - €,
Lt(X) = —ry1+Ts- T(X)
Lri1(x)=-rr+o01- (1 ® Yacc)

Pal, Schadlich

A General Framework for RFE via User-Specific Pre-Constraining 12/15

Decomposition of the Labels

e garbling: sample rg,ry,...,rr <y Zg and output label functions

R

Linit(x) = 09+ 10 - €,
Lt(X) = —ry1+Ts- T(X)
Lri1(x)=-rr+o01- (1 ® Yacc)

. S
o idea: set r, =1 ®r; where ry, <5 ZNEONT gng g g 79
Pal, Schadlich A General Framework for RFE via User-Specific Pre-Constraining 12/15

Decomposition of the Labels

e garbling: sample rg,ry,...,rr <y Zg and output label functions

R

Linit(x) = 09+ 10 - €,
Lt(X) = —ry1+Ts- T(X)
Lri1(x)=-rr+o01- (1 ® Yacc)
[V]x[$]>{0,1}%

e idea: set ry=r,; ®r; where ry; <3 Zp and rg <—g ZLQ]

e decomposition of the labels:

Linit(x) = s - 09 + (rxo ®1rf)[1,1,0g,1]

Pal, Schadlich

A General Framework for RFE via User-Specific Pre-Constraining 12/15

Decomposition of the Labels

e garbling: sample rg,ry,...,rr <y Zg and output label functions

R

Linit(x) = 09+ 10 - €,
Lt(X) = —ry1+Ts- T(X)
Lri1(x)=-rr+o01- (1 ® Yacc)
[V]x[$]>{0,1}%

e idea: set ry=r,; ®r; where ry; <3 Zp and rg <—g ZLQ]

e decomposition of the labels:

Linit(x) = 500+ (rx0 ®1f)[1,1,05,1] = s- 09 + ryo[1,1,0g] - r¢[1]

Pal, Schadlich

A General Framework for RFE via User-Specific Pre-Constraining 12/15

Decomposition of the Labels

e garbling: sample rg,ry,...,rr <y Zg and output label functions

R

Linit(x) = 09+ 10 - €,
Lt(X) = —ry1+Ts- T(X)
Lri1(x)=-rr+o01- (1 ® Yacc)

o idea: set r; =1 ®@r; Where ry, g ZNVEXOUT gng p o 719

e decomposition of the labels:
VAR
Linit(x) = s+ 00 + (reo ®1¢)[1,1,05,1] = 5- 09 +1yp[1,1,05] - r¢[1]
RO A

Pal, Schadlich

A General Framework for RFE via User-Specific Pre-Constraining 12/15

Decomposition of the Labels

e garbling: sample rg,ry,...,rr <y Zg and output label functions

R

Liit(x) =09 +1p - eCTO v
Lt(X) = —ry1+Ts- T(X)
Lri1(x)=-rr+o01- (1 ® Yacc)

o idea: set r; =1 ®@r; Where ry, g ZNVEXOUT gng p o 719

e decomposition of the labels:
VAR
Linit(x) = s+ 00 + (reo ®1¢)[1,1,05,1] = 5- 09 +1yp[1,1,05] - r¢[1]
R_ p

!

Pal, Schadlich

A General Framework for RFE via User-Specific Pre-Constraining 12/15

Decomposition of the Labels

e garbling: sample rg,ry,...,rr <y Zg and output label functions

R

Liit(x) =09 +1p - eCTO v
Lt(X) = —ry1+Ts- T(X)
Lri1(x)=-rr+o01- (1 ® Yacc)

o idea: set r; =1 ®@r; Where ry, g ZNVEXOUT gng p o 719

e decomposition of the labels:

LT+1[k7 j7 w, Q](X) - _(rX,T ® rf)[ga q] +8-01- (1 ® yacc) [27 Q]
-

Pal, Schadlich

A General Framework for RFE via User-Specific Pre-Constraining 12/15

Decomposition of the Labels

e garbling: sample rg,ry,...,rr <y Zg and output label functions

R

Liit(x) =09 +1p - eCTO v
Lt(X) = —ry1+Ts- T(X)
Lri1(x)=-rr+o01- (1 ® Yacc)

o idea: set r; =1 ®@r; Where ry, g ZNVEXOUT gng p o 719

e decomposition of the labels:

Lr1[k, j,w,ql(x) = —(rxr ®rf)[c,q] +5-01 (1 ® yacc) [c,q] = —rx7[c] - relg] + 5+ 01 Yace[d]
—

Pal, Schadlich

A General Framework for RFE via User-Specific Pre-Constraining 12/15

Decomposition of the Labels

e garbling: sample rg,ry,...,rr <y Zg and output label functions

R

Liit(x) =09 +1p - eCTO v
Lt(X) = —ry1+Ts- T(X)
Lri1(x)=-rr+o01- (1 ® Yacc)

o idea: set r; =1 ®@r; Where ry, g ZNVEXOUT gng p o 719

e decomposition of the labels:

g N4

LT+1[k7 Js W, Q](x) - _(rx,T ® I'f)[g, Q] +8-01- (1 ® yacc) [Ea Q] = _rX,TE] ’ rf[Q] +s-01- Yacc[Q]

\p

!

Pal, Schadlich

A General Framework for RFE via User-Specific Pre-Constraining 12/15

Decomposition of the Labels

e garbling: sample rg,ry,...,rr <y Zg and output label functions

D
_
Liit(x) =09 +1p - eCTO v
Lt(X) = —ry1+Ts- T(X)
Lri1(x)=-rr+o01- (1 ® Yacc) v
o idea: set r; =1 ®@r; Where ry, g ZNVEXOUT gng p o 719

e decomposition of the labels:

g N4

LT+1[k7 Js W, Q](x) - _(rx,T ® I'f)[g, Q] +8-01- (1 ® yacc) [Ea Q] = _rX,TE] ’ rf[Q] +s-01- Yacc[Q]

\p

!

Pal, Schadlich

A General Framework for RFE via User-Specific Pre-Constraining 12/15

Decomposition of the Labels

e garbling: sample rg,ry,...,rr <y Zg and output label functions

0N
_
Liit(x) =09 +1p - eCTO v
Lt(X) = —ry1+Ts- T(X)
Lri1(x)=-rr+o01- (1 ® Yacc) v
o idea: set r; =1 ®@r; Where ry, g ZNVEXOUT gng p o 719
e decomposition of the labels:
Li[c, g)(x) = —(rys-1 @ 11)[c, q] + ((rss ® v¢) - T(%))[c, q]
Pal, Schadlich A General Framework for RFE via User-Specific Pre-Constraining 12/15

Decomposition of the Labels

e garbling: sample rg,ry,...,rr <y Zg and output label functions
0N

_
Liit(x) =09 +1p - eCTO v
Lt(X) = —ry1+Ts- T(X)
Lri1(x)=-rr+o01- (1 ® Yacc) v
o idea: set r; =1 ®@r; Where ry, g ZNVEXOUT gng p o 719

e decomposition of the labels:

Lt[E? QJ(X) = _(rx,t—l ® I‘f)[g, Q] + ((rx,t ® rf) : T(X)) [Ea Q] = _rx,t—l[d . rf[‘]] + ((rx,t X rf) : T(X)) Ea QJ

Pal, Schadlich

A General Framework for RFE via User-Specific Pre-Constraining 12/15

Decomposition of the Labels

e garbling: sample rg,ry,...,rr <y Zg and output label functions
0N

_
Liit(x) =09 +1p - eCTO v
Lt(X) = —ry1+Ts- T(X)
Lri1(x)=-rr+o01- (1 ® Yacc) v
o idea: set r; =1 ®@r; Where ry, g ZNVEXOUT gng p o 719
e decomposition of the labels:
- u
g
Lile, q(x) = —(rxe-1 @ 15) [c, q] + ((rxz @ x5) - T(X))[c, q] = —rxp-1[c] - velg] + ((rx¢ ® 7f) - T(%))[c, 4]
£\
p
Pal, Schadlich A General Framework for RFE via User-Specific Pre-Constraining 12/15

Decomposition of the Labels

e garbling: sample rg,ry,...,rr <y Zg and output label functions

0N
N
Liit(x) =09 +1p - eCTO v
Li(x) = —ry_1 +1; - T(x) X
Lri1(x)=-rr+o01- (1 ® Yacc) v
o idea: set r; =1 ®@r; Where ry, g ZNVEXOUT gng p o 719
e decomposition of the labels:
- U
g
Lt[E? QJ(X) - _(rx,t—l ® I‘f)[g, Q] + ((rx,t X rf) : T(X)) [Ea Q] Tyt I[J rf[‘]] + rxt ® I'f La q]

p/ H/—J

Pal, Schadlich

A General Framework for RFE via User-Specific Pre-Constraining 12/15

Block Structure of Transition Matrix

® transition matrix T(x)[c’,cA:

{1 if 6(q, x[k], w[j]) = (¢', Ww'ls], K" — k,j" — j), w[# j] = w'[# J]
R

0 otherwise

Pal, Schadlich

A General Framework for RFE via User-Specific Pre-Constraining 13/15

Block Structure of Transition Matrix

o tansivon matex Tl {(1) 80,506, wh) = (s WL K = k' =), wi 1 =l
‘/ﬁ \\ otherwise

e’ = [k,’jf w) 7)) ¢ = [k,j) w, 9)

e consider Q x Q blocks T(x)[(K, 7, w',), (k,j,w,)]
— ——
4 4

éﬂ‘é/océ colvmn Cc——(k, J w), _)

block row (e=(k j; w), _)
T(X) = [] Q/
Pal, Schadlich A General Framework for RFE via User-Specific Pre-Constraining 13/15

Block Structure of Transition Matrix

o tansivon matex Tl {(1) 80,506, wh) = (s WL K = k' =), wi 1 =l
‘/ﬁ \\ otherwise

e’ = [k,’jf w) 7)) ¢ = [k,j) w, 9)

e consider Q x Q blocks T(x)[(K, 7, w',), (k,j,w,)]
— ——
4 4

-> ejther zero matrix

éﬂ‘é/océ colvmn Cc——(k, J w), _)

block row (e=(k j; w), _)
T(X) = [] Q/
Pal, Schadlich A General Framework for RFE via User-Specific Pre-Constraining 13/15

Block Structure of Transition Matrix

o vansiion motrx T — {3 FAQAH W) = (€ WK~ =3 Wl = Wl
‘/ﬁ \\ otherwise

e'= (k] w) q) c=(0j w q)
e consider Qx Q blocks T(x)[(k' ', w',.), (k. w,)]
—
4 4

-> ejther zero matrix
-> or “transition block” in B = {Bguuw,akaj|z, w,w' € {0,1}, Ak, Aj € {0,£1}}

éﬂ‘é/océ colvmn Cc——(k, J w), _)

b/o;é row (= j: w), _)
T(x) = ||) |«

—

A General Framework for RFE via User-Specific Pre-Constraining 13/15

Pal, Schadlich

Block Structure of Transition Matrix

o vansiion motrx T — {3 FAQAH W) = (€ WK~ =3 Wl = Wl
‘/ﬁ \\ otherwise

e'= (k] w) q) c=(0j w q)
e consider Qx Q blocks T(x)[(k' ', w',.), (k. w,)]
—
4 4

-> ejther zero matrix
-> or “transition block” in B = {Bguuw,akaj|z, w,w' € {0,1}, Ak, Aj € {0,£1}}

e observation: each B, . axa; appears at most once per “block column”

éﬂ‘é/océ colvmn Cc——(k, J w), _)

b/o;é row (= j: w), _)
T(x) = ||) |«

—

A General Framework for RFE via User-Specific Pre-Constraining 13/15

Pal, Schadlich

Block Structure of Transition Matrix

® transition matrix T(x)[c’,c;: {(1) i)ftfl(e?wxi[slﬂ,“’[j]) = (¢, w'[j, k' — k,§" — j), w[# j] = W'[#]]
_

= w q) =k wq)
e consider Qx Q blocks T(x)[(K,5,w',_), (k, 4, w,_)]
—— ——
14 c

-> either zero matrix
-> or “transition block” in B = {Bw,w7w/,Ak,Aj|m, w,w' € {0,1}, Ak,Aj € {O,il}}

e observation: each B, . axa; appears at most once per “block column”

decomposition of the last term: h
(ret ®16) - T(x)[(-5), (¢ 9)]

_ J
Pal, Schadlich

A General Framework for RFE via User-Specific Pre-Constraining 13/15

Block Structure of Transition Matrix

® transition matrix T(x)[c’,c;: {(1) i)fti(eqr,wxi[:j,w[j]) = (¢, w'[j, k' — k,§" — j), w[# j] = W'[#]]
_

e'= (k] w) q) c=(kj w q)

e consider Q x Q blocks T(x)[(K, 7, w',), (k,j,w,)]
— —
4 4

-> either zero matrix
-> or “transition block” in B = {Bgw.uw akaj|z, w,w' € {0,1}, Ak,Aj € {0,+1}}

e observation: each B, .. axa; appears at most once per “block column”, position independent of x

decomposition of the last term: h

(rye ®@re) - T(x)[(,2), (¢, 9)] = Z ryt[c'] - relg] - By wiiw,AkAj
w',Ak,Aj

_ _J
Pal, Schadlich

A General Framework for RFE via User-Specific Pre-Constraining 13/15

Block Structure of Transition Matrix

® transition matrix T(x)[c’,c;: {(1) i)fti(eqr,wxi[:j,w[j]) = (¢, w'[j, k' — k,§" — j), w[# j] = W'[#]]
_

e'= (k] w) q) c=(kj w q)

e consider Q x Q blocks T(x)[(K, 7, w',), (k,j,w,)]
— —
4 4

-> either zero matrix
-> or “transition block” in B = {Bgw.uw akaj|z, w,w' € {0,1}, Ak,Aj € {0,+1}}

e observation: each B, .. axa; appears at most once per “block column”, position independent of x

decomposition of the last term: u vV)
D -
(rye ®@re) - T(x)[(,2), (¢, 9)] = Z Txt '] - r¢lq] - B k), wijw',ARAj
', Ak,Aj /Q
_ i)

Pal, Schadlich

A General Framework for RFE via User-Specific Pre-Constraining 13/15

Generalization to RFE

e sofar, we used oy as a pad for (a fixed message) p and o1 as a masking term

Arithmetic Key Garbling Scheme [EC:LL20]

Garble(f,0¢0,01;r) — L = (L[1],...,L[m])
Eval(f,x,£:= (1,x)-L) > d St d=o01f(x)+ 0

Pal, Schadlich

A General Framework for RFE via User-Specific Pre-Constraining 14/15

Generalization to RFE

e sofar, we used o as a pad for (a fixed message) . and o as a masking term
e more general, we can

o encode data in o
-> attribute-weighted sums functionalities

Arithmetic Key Garbling Scheme [EC:LL20]

Garble(f,0¢0,01;r) — L = (L[1],...,L[m])
Eval(f,x,£:= (1,x)-L) > d St d=o01f(x)+ 0

Pal, Schadlich

A General Framework for RFE via User-Specific Pre-Constraining 14/15

Generalization to RFE

e sofar, we used o as a pad for (a fixed message) . and o as a masking term
e more general, we can

o encode datain oy
-> attribute-weighted sums functionalities

o use oy as pad for any other (independently computed) RFE functionality
-> attribute-based functionalities (AB-AWS, AB-QF)

Arithmetic Key Garbling Scheme [EC:LL20]

Garble(f,0¢0,01;r) — L = (L[1],...,L[m])
Eval(f,x,£:= (1,x)-L) > d St d=o01f(x)+ 0

Pal, Schadlich

A General Framework for RFE via User-Specific Pre-Constraining 14/15

Conclusion

e classical FE provides security against malicious user but needs to trust authority
e registered FE circumvents the need for trusted authority

Pal, Schadlich

A General Framework for RFE via User-Specific Pre-Constraining 15/15

Conclusion

e classical FE provides security against malicious user but needs to trust authority
e registered FE circumvents the need for trusted authority

e this work: adapt modular framework from classical to registered setting to obtain
o RABE for logspace TMs
o RFE for AB-AWS and AB-QF

Pal, Schadlich

A General Framework for RFE via User-Specific Pre-Constraining 15/15

Conclusion

classical FE provides security against malicious user but needs to trust authority
e registered FE circumvents the need for trusted authority

e this work: adapt modular framework from classical to registered setting to obtain
o RABE for logspace TMs
o RFE for AB-AWS and AB-QF

e on-going work:
o realize framework from lattices (evasive RFE for Pre-IP + noisy linear garbling scheme)

Pal, Schadlich

A General Framework for RFE via User-Specific Pre-Constraining 15/15

Conclusion

classical FE provides security against malicious user but needs to trust authority
e registered FE circumvents the need for trusted authority

e this work: adapt modular framework from classical to registered setting to obtain
o RABE for logspace TMs
o RFE for AB-AWS and AB-QF

e on-going work:
o realize framework from lattices (evasive RFE for Pre-IP + noisy linear garbling scheme)

e open problems:
o (pairings) adaptive security, compression of CRS
o (lattices) weaker, falsifiable assumptions

Pal, Schadlich

A General Framework for RFE via User-Specific Pre-Constraining 15/15

Pal, Schadlich

Conclusion

classical FE provides security against malicious user but needs to trust authority
registered FE circumvents the need for trusted authority

this work: adapt modular framework from classical to registered setting to obtain
o RABE for logspace TMs
o RFE for AB-AWS and AB-QF

on-going work:
o realize framework from lattices (evasive RFE for Pre-IP + noisy linear garbling scheme)

open problems:
o (pairings) adaptive security, compression of CRS
o (lattices) weaker, falsifiable assumptions

Thank you!!! :)

A General Framework for RFE via User-Specific Pre-Constraining 15/15

