
Registered Functional Encryption for
Attribute-Weighted Sums with Access Control

Tapas Pal1 Robert Schädlich2

December 5, 2024

1 Karlsruhe Institute of Technology, KASTEL Security Research Labs
2 DIENS, École normale supérieure, PSL University, CNRS, Inria

1/15

Pal, Schädlich Registered FE for AWS with Access Control 2/15

Functional Encryption (FE) [TCC:BSW11]

Pal, Schädlich Registered FE for AWS with Access Control 2/15

Functional Encryption (FE) [TCC:BSW11]

Pal, Schädlich Registered FE for AWS with Access Control 2/15

Functional Encryption (FE) [TCC:BSW11]

Pal, Schädlich Registered FE for AWS with Access Control 2/15

Functional Encryption (FE) [TCC:BSW11]

Pal, Schädlich Registered FE for AWS with Access Control 2/15

Functional Encryption (FE) [TCC:BSW11]

Pal, Schädlich Registered FE for AWS with Access Control

Functional Encryption (FE) [TCC:BSW11]

2/15

Security?

Pal, Schädlich Registered FE for AWS with Access Control

Functional Encryption (FE) [TCC:BSW11]

2/15

Security?

adversary obtains secret keys:

Pal, Schädlich Registered FE for AWS with Access Control

Functional Encryption (FE) [TCC:BSW11]

2/15

Security?

adversary obtains secret keys:
ct reveals nothing about x except

function values f1(x), f2(x) and f3(x)

Pal, Schädlich Registered FE for AWS with Access Control

Functional Encryption (FE) [TCC:BSW11]

2/15

Security?

key-escrow problem: msk reveals f(m) for all f :(

Pal, Schädlich Registered FE for AWS with Access Control

Functional Encryption (FE) [TCC:BSW11]

2/15

Security?

key-escrow problem: msk reveals f(m) for all f :(

 Solutions

● multi-authority FE
● registration-based FE

Pal, Schädlich Registered FE for AWS with Access Control

Registered Functional Encryption (RFE) [AC:FFM+23]

3/15

Pal, Schädlich Registered FE for AWS with Access Control

Registered Functional Encryption (RFE) [AC:FFM+23]

3/15

Pal, Schädlich Registered FE for AWS with Access Control

Registered Functional Encryption (RFE) [AC:FFM+23]

3/15

Pal, Schädlich Registered FE for AWS with Access Control

Registered Functional Encryption (RFE) [AC:FFM+23]

3/15

Pal, Schädlich Registered FE for AWS with Access Control

Registered Functional Encryption (RFE) [AC:FFM+23]

3/15

key curator is deterministic & holds no secret => key-escrow problem resolved!

Pal, Schädlich Registered FE for AWS with Access Control

Registered Functional Encryption (RFE) [AC:FFM+23]

3/15

key curator is deterministic & holds no secret => key-escrow problem resolved!

compactness: |mpk|, |ct| = poly(log L) where L=#users

Pal, Schädlich Registered FE for AWS with Access Control

Registered Functional Encryption (RFE) [AC:FFM+23]

3/15

compactness: |mpk|, |ct|, |hski| = poly(log L) where L=#users

key curator is deterministic & holds no secret => key-escrow problem resolved!

Pal, Schädlich Registered FE for AWS with Access Control

Registered Functional Encryption (RFE) [AC:FFM+23]

3/15

1-by-1 registration

compactness: |mpk|, |ct|, |hski| = poly(log L) where L=#users

key curator is deterministic & holds no secret => key-escrow problem resolved!

Pal, Schädlich Registered FE for AWS with Access Control

Registered Functional Encryption (RFE) [AC:FFM+23]

3/15

1-by-1 registration

update if required

compactness: |mpk|, |ct|, |hski|, #updates = poly(log L) where L=#users

key curator is deterministic & holds no secret => key-escrow problem resolved!

Pal, Schädlich Registered FE for AWS with Access Control

Slotted Registered Functional Encryption (sRFE)

4/15

compactness: |mpk|, |ct|, |hski| = poly(log L) where L=#users

Pal, Schädlich Registered FE for AWS with Access Control

Slotted Registered Functional Encryption (sRFE)

4/15

1-shot registration

compactness: |mpk|, |ct|, |hski| = poly(log L) where L=#users

Pal, Schädlich Registered FE for AWS with Access Control

Slotted Registered Functional Encryption (sRFE)

4/15

1-shot registration

no updates

compactness: |mpk|, |ct|, |hski| = poly(log L) where L=#users

Pal, Schädlich Registered FE for AWS with Access Control

Slotted Registered Functional Encryption (sRFE)

4/15

1-shot registration

no updates

compactness: |mpk|, |ct|, |hski| = poly(log L) where L=#users

[HLWW23]: sRFE => RFE (“powers-of-two compiler”)

Pal, Schädlich Registered FE for AWS with Access Control

Slotted Registered Functional Encryption (sRFE)

4/15

Pal, Schädlich Registered FE for AWS with Access Control

Slotted Registered Functional Encryption (sRFE)

5/15
Security?

Pal, Schädlich Registered FE for AWS with Access Control

Slotted Registered Functional Encryption (sRFE)

5/15

corrupt user
honest user

Security?

Pal, Schädlich Registered FE for AWS with Access Control

Slotted Registered Functional Encryption (sRFE)

5/15

corrupt user
honest user

nothing revealed :)

Security?

Pal, Schädlich Registered FE for AWS with Access Control

Slotted Registered Functional Encryption (sRFE)

5/15

corrupt user
honest user

function value
disclosed! :(nothing revealed :)

Security?

Pal, Schädlich Registered FE for AWS with Access Control

Slotted Registered Functional Encryption (sRFE)

5/15

corrupt user
honest user

this talk: no malicious users

function value
disclosed! :(nothing revealed :)

Security?

Pal, Schädlich Registered FE for AWS with Access Control

Existing RFE beyond Predicates

6/15

Work Function Class Assumption Remarks

[AC:FFM+23, AC:DPY24] general iO, SSB

[AC:DPY24] AB-IP GGM LSSS access policies

[AC:BLM+24] IP, weak QF q-type

Pal, Schädlich Registered FE for AWS with Access Control

Existing RFE beyond Predicates

6/15

Work Function Class Assumption Remarks

[AC:FFM+23, AC:DPY24] general iO, SSB

[AC:DPY24] AB-IP GGM LSSS access policies

[AC:BLM+24] IP, weak QF q-type

[EC:ZLZ+24] IP, QF bilateral MDDH

Pal, Schädlich Registered FE for AWS with Access Control

Existing RFE beyond Predicates

6/15

Work Function Class Assumption Remarks

[AC:FFM+23, AC:DPY24] general iO, SSB

[AC:DPY24] AB-IP GGM LSSS access policies

[AC:BLM+24] IP, weak QF q-type

[EC:ZLZ+24] IP, QF bilateral MDDH

[this work] AB-AWS bilateral MDDH ABP access policies

attribute-based attribute-weighted sums (see next slide)

Pal, Schädlich Registered FE for AWS with Access Control

● inner product (IP) [EC:ZLZ+24]

Attribute-Weighted Sums [C:AGW20]

7/15

Pal, Schädlich Registered FE for AWS with Access Control

● inner product (IP) [EC:ZLZ+24]

● 1-input attribute-weighted sum (1AWS)

Attribute-Weighted Sums [C:AGW20]

7/15

variable coefficient vectors
(computable by ABP)

Pal, Schädlich Registered FE for AWS with Access Control

● inner product (IP) [EC:ZLZ+24]

● 1-input attribute-weighted sum (1AWS)

● (unbounded-input) attribute-weighted sum (AWS)

Attribute-Weighted Sums [C:AGW20]

7/15

variable coefficient vectors
(computable by ABP)

unbounded-size data sets

Pal, Schädlich Registered FE for AWS with Access Control

● inner product (IP) [EC:ZLZ+24]

● 1-input attribute-weighted sum (1AWS)

● (unbounded-input) attribute-weighted sum (AWS)

● attribute-based attribute-weighted sum (AB-AWS)

Attribute-Weighted Sums [C:AGW20]

7/15

variable coefficient vectors
(computable by ABP)

unbounded-size data sets

fine-grained access control

Pal, Schädlich Registered FE for AWS with Access Control

● setup: sample random matrices and define

8/15

Inner Product Functional Encryption (IPFE) [PKC:ABDP15, C:ALS16]

Pal, Schädlich Registered FE for AWS with Access Control

● setup: sample random matrices and define

● encryption: to encrypt , sample random vector and output

8/15

=: [c2][c1] :=

Inner Product Functional Encryption (IPFE) [PKC:ABDP15, C:ALS16]

Pal, Schädlich Registered FE for AWS with Access Control

● setup: sample random matrices and define

● encryption: to encrypt , sample random vector and output

● key generation: to generate a key for , output

● decryption: output

8/15

=: [c2][c1] :=

Inner Product Functional Encryption (IPFE) [PKC:ABDP15, C:ALS16]

Pal, Schädlich Registered FE for AWS with Access Control

● setup: sample random matrices and define

● encryption: to encrypt , sample random vector and output

● key generation: to generate a key for , output

● decryption: output (or)

8/15

or a matrix Y (in which case the secret key is)

=: [c2][c1] :=

Inner Product Functional Encryption (IPFE) [PKC:ABDP15, C:ALS16]

Pal, Schädlich Registered FE for AWS with Access Control

Partial Garbling for 1AWS [ICALP:IW14]

9/15

● garbling: given an ABP and public input , compute matrix , sample randomness ,
 and output

Pal, Schädlich Registered FE for AWS with Access Control

Partial Garbling for 1AWS [ICALP:IW14]

9/15

● garbling: given an ABP and public input , compute matrix , sample randomness ,
 and output

some subvector

Pal, Schädlich Registered FE for AWS with Access Control

Partial Garbling for 1AWS [ICALP:IW14]

9/15

● garbling: given an ABP and public input , compute matrix , sample randomness ,
 and output

● reconstruction: given , find vector such that some subvector

Pal, Schädlich Registered FE for AWS with Access Control

Partial Garbling for 1AWS [ICALP:IW14]

9/15

● garbling: given an ABP and public input , compute matrix , sample randomness ,
 and output

● reconstruction: given , find vector such that

● privacy: forrandom , the following distributions are indistinguishable

some subvector

Pal, Schädlich Registered FE for AWS with Access Control

Combining the Two — Classical FE for 1AWS

10/15

Reminder.
● ALS IFPE: ,

● partial garbling for 1AWS:

Pal, Schädlich Registered FE for AWS with Access Control

Combining the Two — Classical FE for 1AWS

10/15

=: [p2][p1] :=

“variable random pad” w = sAW

Reminder.
● ALS IFPE: ,

● partial garbling for 1AWS:

Pal, Schädlich Registered FE for AWS with Access Control

Combining the Two — Classical FE for 1AWS

10/15

note: this is not the actual 1AWS functionality

=: [p2][p1] :=

“variable random pad” w = sAW

Reminder.
● ALS IFPE: ,

● partial garbling for 1AWS:

Pal, Schädlich Registered FE for AWS with Access Control

RFE for a Single User

11/15

=: [p2][p1] :=

“variable random pad” w = sAW

Pal, Schädlich Registered FE for AWS with Access Control

RFE for a Single User

11/15

=: [p2][p1] :=

“variable random pad” w = sAW

FE.mpk

Pal, Schädlich Registered FE for AWS with Access Control

RFE for a Single User

11/15

=: [p2][p1] :=

“variable random pad” w = sAW

FE.mpk

(for a random matrix U)

Pal, Schädlich Registered FE for AWS with Access Control

RFE for a Single User

11/15

=: [p2][p1] :=

“variable random pad” w = sAW

FE.mpk

FE.ct Enc(pk, FE.skh,x)

(for a random matrix U)

Pal, Schädlich Registered FE for AWS with Access Control

RFE for a Single User

11/15

=: [p2][p1] :=

“variable random pad” w = sAW

FE.mpk

FE.ct Enc(pk, FE.skh,x)

(for a random matrix U)
Security.

1) sk=U is secret (i.e. user honest):
-> nothing revealed under MDDHk

2) sk=U known to A (i.e. user corrupted):
-> only zh(x)T revealed under security of pgb

Pal, Schädlich Registered FE for AWS with Access Control

RFE for a Single User

11/15

=: [p2][p1] :=

“variable random pad” w = sAW

FE.mpk

FE.ct Enc(pk, FE.skh,x)

(for a random matrix U)
Security.

1) sk=U is secret (i.e. user honest):
-> nothing revealed under MDDHk

2) sk=U known to A (i.e. user corrupted):
-> only zh(x)T revealed under security of pgb

Pal, Schädlich Registered FE for AWS with Access Control

RFE for Multiple Users

12/15

=: [p2][p1] :=

“variable random pad” w = sAW

Pal, Schädlich Registered FE for AWS with Access Control

RFE for Multiple Users

12/15

FE.mpk

(for random matrices Ui)

=: [p2][p1] :=

“variable random pad” w = sAW

Pal, Schädlich Registered FE for AWS with Access Control

RFE for Multiple Users

12/15

FE.mpk

(for random matrices Ui)

sum of L independent 1-slot instances

=: [p2][p1] :=

“variable random pad” w = sAW

Pal, Schädlich Registered FE for AWS with Access Control

RFE for Multiple Users

12/15

FE.mpk

(for random matrices Ui)

sum of L independent 1-slot instances

Pal, Schädlich Registered FE for AWS with Access Control

RFE for Multiple Users

12/15

FE.mpk

(for random matrices Ui)

sum of L independent 1-slot instances … how to decrypt? -> helper secret keys

Pal, Schädlich Registered FE for AWS with Access Control

RFE for Multiple Users

12/15

FE.mpk

(for random matrices Ui)

sum of L independent 1-slot instances … how to decrypt? -> helper secret keys

Intuition.
● user could decrypt given

Pal, Schädlich Registered FE for AWS with Access Control

RFE for Multiple Users

12/15

FE.mpk

(for random matrices Ui)

sum of L independent 1-slot instances … how to decrypt? -> helper secret keys

Intuition.
● user could decrypt given
● problem 1: helper secret key contains scalar values

Pal, Schädlich Registered FE for AWS with Access Control

RFE for Multiple Users

12/15

FE.mpk

(for random matrices Ui)

sum of L independent 1-slot instances … how to decrypt? -> helper secret keys

Intuition.
● user could decrypt given
● problem 1: helper secret key contains scalar values
● solution 1: switch to pairing group with ciphertexts in and helper secret keys in

Pal, Schädlich Registered FE for AWS with Access Control

RFE for Multiple Users

12/15

FE.mpk

(for random matrices Ui)

sum of L independent 1-slot instances … how to decrypt? -> helper secret keys

Intuition.
● user could decrypt given

Pal, Schädlich Registered FE for AWS with Access Control

RFE for Multiple Users

12/15

FE.mpk

(for random matrices Ui)

sum of L independent 1-slot instances … how to decrypt? -> helper secret keys

Intuition.
● user could decrypt given
● problem 2: masking terms for different users are correlated

Pal, Schädlich Registered FE for AWS with Access Control

RFE for Multiple Users

12/15

FE.mpk

(for random matrices Ui)

sum of L independent 1-slot instances … how to decrypt? -> helper secret keys

Intuition.
● user could decrypt given
● problem 2: masking terms for different users are correlated
● (partial) solution 2: user-specific re-randomization of helper secret keys

Pal, Schädlich Registered FE for AWS with Access Control

RFE for Multiple Users

12/15

FE.mpk

(for random matrices Ui)

sum of L independent 1-slot instances … how to decrypt? -> helper secret keys

Intuition.
● user could decrypt given
● problem 2: masking terms for different users are correlated
● (partial) solution 2: user-specific re-randomization of helper secret keys

Pal, Schädlich Registered FE for AWS with Access Control

Pad Re-Randomization

13/15

ciphertext helper secret key

Question: how to choose ?
● naive approach: a random (uniform) matrix

Pal, Schädlich Registered FE for AWS with Access Control

Pad Re-Randomization

13/15

ciphertext helper secret key

Question: how to choose ?
● naive approach: a random (uniform) matrix

problem 1: input vector changes

Pal, Schädlich Registered FE for AWS with Access Control

Pad Re-Randomization

13/15

ciphertext helper secret key problem 1: input vector changes

problem 2: correctly randomized encoding
should be sAWR ∙ Lx

Question: how to choose ?
● naive approach: a random (uniform) matrix

Pal, Schädlich Registered FE for AWS with Access Control

Pad Re-Randomization

13/15

ciphertext helper secret key problem 1: input vector changes

problem 2: correctly randomized encoding
should be sAWR ∙ Lx

Question: how to choose ?
● naive approach: a random (uniform) matrix
● solution 1: for (tensored ALS encodings)

Pal, Schädlich Registered FE for AWS with Access Control

Pad Re-Randomization

13/15

ciphertext helper secret key problem 1: input vector changes

problem 2: correctly randomized encoding
should be sAWR ∙ Lx

Question: how to choose ?
● naive approach: a random (uniform) matrix
● solution 1: for (tensored ALS encodings)

mixed-product property:
(A ⊗ B)(C ⊗ D) = (AC ⊗ BD)

Pal, Schädlich Registered FE for AWS with Access Control

Pad Re-Randomization

13/15

ciphertext helper secret key problem 1: input vector changes

problem 2: correctly randomized encoding
should be sAWR ∙ Lx

-> sAWLx ∙ (I ⊗rT) = sAW(I ⊗rT) ∙ Lx

Question: how to choose ?
● naive approach: a random (uniform) matrix
● solution 1: for (tensored ALS encodings)

mixed-product property:
(A ⊗ B)(C ⊗ D) = (AC ⊗ BD)

Pal, Schädlich Registered FE for AWS with Access Control

Pad Re-Randomization

13/15

ciphertext helper secret key problem 1: input vector changes

problem 2: correctly randomized encoding
should be sAWR ∙ Lx

-> sAWLx ∙ (I ⊗rT) = sAW(I ⊗rT) ∙ Lx

-> encode z ⊗ sA and decode
 in new basis sArT

Question: how to choose ?
● naive approach: a random (uniform) matrix
● solution 1: for (tensored ALS encodings)

mixed-product property:
(A ⊗ B)(C ⊗ D) = (AC ⊗ BD)

Pal, Schädlich Registered FE for AWS with Access Control

Pad Re-Randomization

13/15

ciphertext helper secret key problem 1: input vector changes

problem 2: correctly randomized encoding
should be sAWR ∙ Lx

-> sAWLx ∙ (I ⊗rT) = sAW(I ⊗rT) ∙ Lx

-> encode z ⊗ sA and decode
 in new basis sAR

Question: how to choose ?
● naive approach: a random (uniform) matrix
● solution 1: for (tensored ALS encodings)
● solution 2: use different ALS keys (nested ALS encodings)

mixed-product property:
(A ⊗ B)(C ⊗ D) = (AC ⊗ BD)

Pal, Schädlich Registered FE for AWS with Access Control

Solution 2: Nested ALS Encodings

14/15

ciphertext helper secret key

Pal, Schädlich Registered FE for AWS with Access Control

Conclusion

15/15

● classical FE provides security against malicious user but needs to trust authority
● registered FE circumvents the need for trusted authority

Pal, Schädlich Registered FE for AWS with Access Control

Conclusion

15/15

● classical FE provides security against malicious user but needs to trust authority
● registered FE circumvents the need for trusted authority

● this work:
○ RFE for 1AWS with adaptive security using tensored ALS encodings
○ RFE for AB-AWS with selective security using nested ALS encodings

Pal, Schädlich Registered FE for AWS with Access Control

Conclusion

15/15

● classical FE provides security against malicious user but needs to trust authority
● registered FE circumvents the need for trusted authority

● this work:
○ RFE for 1AWS with adaptive security using tensored ALS encodings
○ RFE for AB-AWS with selective security using nested ALS encodings

● follow-up work:
○ modular framework (pre-constrained IP-RFE + garbling scheme)
○ new functionalities (AB-AWS and AB-QF for log-space TMs)

Pal, Schädlich Registered FE for AWS with Access Control

Conclusion

15/15

● classical FE provides security against malicious user but needs to trust authority
● registered FE circumvents the need for trusted authority

● this work:
○ RFE for 1AWS with adaptive security using tensored ALS encodings
○ RFE for AB-AWS with selective security using nested ALS encodings

● follow-up work:
○ modular framework (pre-constrained IP-RFE + garbling scheme)
○ new functionalities (AB-AWS and AB-QF for log-space TMs)

● open problems:
○ adaptive security
○ compression of CRS

Pal, Schädlich Registered FE for AWS with Access Control

Conclusion

15/15

● classical FE provides security against malicious user but needs to trust authority
● registered FE circumvents the need for trusted authority

● this work:
○ RFE for 1AWS with adaptive security using tensored ALS encodings
○ RFE for AB-AWS with selective security using nested ALS encodings

● follow-up work:
○ modular framework (pre-constrained IP-RFE + garbling scheme)
○ new functionalities (AB-AWS and AB-QF for log-space TMs)

● open problems:
○ adaptive security
○ compression of CRS

Thank you!!! :)

