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Security?

adversary obtains secret keys:
ct reveals nothing about x except

function values f1(x), f2(x) and f3(x)
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Security?

key-escrow problem: msk reveals f(m) for all f :(

  Solutions

● multi-authority FE
● registration-based FE
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1-by-1 registration

update if required

compactness: |mpk|, |ct|, |hski|, #updates = poly(log L) where L=#users

key curator is deterministic & holds no secret => key-escrow problem resolved!
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1-shot registration

no updates

compactness: |mpk|, |ct|, |hski| = poly(log L) where L=#users

[HLWW23]: sRFE => RFE (“powers-of-two compiler”)
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Slotted Registered Functional Encryption (sRFE)
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corrupt user
honest user

this talk: no malicious users

function value 
disclosed! :( nothing revealed :)

Security?
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Existing RFE beyond Predicates
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Work Function Class Assumption Remarks

[AC:FFM+23, AC:DPY24] general iO, SSB

[AC:DPY24] AB-IP GGM LSSS access policies

[AC:BLM+24] IP, weak QF q-type

[EC:ZLZ+24] IP, QF bilateral MDDH

[this work] AB-AWS bilateral MDDH ABP access policies

attribute-based attribute-weighted sums   (see next slide)
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● inner product (IP)   [EC:ZLZ+24]

● 1-input attribute-weighted sum (1AWS)

● (unbounded-input) attribute-weighted sum (AWS)

● attribute-based attribute-weighted sum (AB-AWS)

Attribute-Weighted Sums [C:AGW20]

7/15

variable coefficient vectors
(computable by ABP)

unbounded-size data sets

fine-grained access control
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● setup: sample random matrices         and define

● encryption: to encrypt   , sample random vector     and output

● key generation: to generate a key for    , output
        

● decryption: output      (or                 )
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or a matrix Y          (in which case the secret key is           )

=: [c2][c1] :=

Inner Product Functional Encryption (IPFE) [PKC:ABDP15, C:ALS16]
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Partial Garbling for 1AWS [ICALP:IW14]
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● garbling: given an ABP    and public input    , compute matrix  , sample randomness    ,
      and output

● reconstruction: given        , find vector        such that

● privacy: forrandom     , the following distributions are indistinguishable

some subvector
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note: this is not the actual 1AWS functionality

=: [p2][p1] :=

“variable random pad”  w = sAW

Reminder.
● ALS IFPE:       ,

● partial garbling for 1AWS:
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“variable random pad”  w = sAW

FE.mpk

FE.ct Enc(pk, FE.skh,x)

(for a random matrix U)
Security.

1) sk=U is secret (i.e. user honest):
-> nothing revealed under MDDHk

2) sk=U known to A (i.e. user corrupted):
-> only zh(x)T revealed under security of pgb
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● problem 1: helper secret key contains scalar values
● solution 1: switch to pairing group with ciphertexts in      and helper secret keys in
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(for random matrices Ui )
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problem 2:  correctly randomized encoding 
should be sAWR ∙ Lx
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Pad Re-Randomization
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ciphertext helper secret key problem 1:  input vector changes

problem 2:  correctly randomized encoding 
should be sAWR ∙ Lx

->  sAWLx ∙ (I ⊗rT) = sAW(I ⊗rT) ∙ Lx

->  encode  z ⊗ sA  and decode 
       in new basis sAR

Question: how to choose    ?
● naive approach: a random (uniform) matrix
● solution 1:        for                 (tensored ALS encodings)
● solution 2: use different ALS keys       (nested ALS encodings)

mixed-product property:
(A ⊗ B)(C ⊗ D) = (AC ⊗ BD)
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ciphertext helper secret key



Pal, Schädlich Registered FE for AWS with Access Control

Conclusion

15/15

● classical FE provides security against malicious user but needs to trust authority
● registered FE circumvents the need for trusted authority



Pal, Schädlich Registered FE for AWS with Access Control

Conclusion

15/15

● classical FE provides security against malicious user but needs to trust authority
● registered FE circumvents the need for trusted authority

● this work:
○ RFE for 1AWS with adaptive security using tensored ALS encodings
○ RFE for AB-AWS with selective security using nested ALS encodings



Pal, Schädlich Registered FE for AWS with Access Control

Conclusion

15/15

● classical FE provides security against malicious user but needs to trust authority
● registered FE circumvents the need for trusted authority

● this work:
○ RFE for 1AWS with adaptive security using tensored ALS encodings
○ RFE for AB-AWS with selective security using nested ALS encodings

● follow-up work:
○ modular framework (pre-constrained IP-RFE + garbling scheme)
○ new functionalities (AB-AWS and AB-QF for log-space TMs)



Pal, Schädlich Registered FE for AWS with Access Control

Conclusion

15/15

● classical FE provides security against malicious user but needs to trust authority
● registered FE circumvents the need for trusted authority

● this work:
○ RFE for 1AWS with adaptive security using tensored ALS encodings
○ RFE for AB-AWS with selective security using nested ALS encodings

● follow-up work:
○ modular framework (pre-constrained IP-RFE + garbling scheme)
○ new functionalities (AB-AWS and AB-QF for log-space TMs)

● open problems:
○ adaptive security
○ compression of CRS



Pal, Schädlich Registered FE for AWS with Access Control

Conclusion

15/15

● classical FE provides security against malicious user but needs to trust authority
● registered FE circumvents the need for trusted authority

● this work:
○ RFE for 1AWS with adaptive security using tensored ALS encodings
○ RFE for AB-AWS with selective security using nested ALS encodings

● follow-up work:
○ modular framework (pre-constrained IP-RFE + garbling scheme)
○ new functionalities (AB-AWS and AB-QF for log-space TMs)

● open problems:
○ adaptive security
○ compression of CRS

Thank you!!!   :)


