Multi-Client Attribute-Based and Predicate Encryption from Standard Assumptions

David Pointcheval^{1,2}

Robert Schädlich²

December 5, 2024

² DIENS, École normale supérieure, PSL University, CNRS, Inria, Paris, France

¹ Cosmian, Paris, France

Attribute-Based Encryption (ABE) [SW05]

$$\mathsf{Enc}(\mathsf{mpk},x,\mu) o \mathsf{ct}_x$$

 $\mathsf{KeyGen}(\mathsf{msk},f) o \mathsf{dk}_f$

Attribute-Based Encryption (ABE) [SW05]

Attribute-Based Encryption (ABE) [SW05]

attribute-based encryption: **public** input predicate encryption: **private** input

Multi-Input Attribute-Based Encryption (MI-ABE) [BJK⁺18]

Multi-Client Attribute-Based Encryption (MC-ABE)

1st new feature: separation & corruption of secret keys

if all $f_i(x_1,\ldots,x_n)=0$

 $\mathsf{KeyGen}(\mathsf{msk},f) \to \mathsf{dk}_f$

Multi-Client Attribute-Based Encryption (MC-ABE)

<u>Multi-Client</u> Attribute-Based Encryption (MC-ABE)

Work	Policy Class	Assumption	Remarks
[C:AYY22]	NC ¹	KOALA	only arity 2
[C:ARYY23]	Р	Evasive LWE, Tensor LWE	

Work	Policy Class	Assumption	Remarks		
[C:AYY22]	NC ¹	KOALA	only arity 2		
[C:ARYY23]	Р	Evasive LWE, Tensor LWE			
[EC:FFMV23]	Conjunctions of P	LWE	+++ supports corruptions no collusions		
[C:ATY23]	Conjunctions of NC ¹	MDDH			
$f(x_1,\ldots,x_n)=f_1(x_1)\wedge\cdots\wedge f_n(x_n)$					

Note: MI-ABE for polynomial arity and NC¹ policies ⇒ Witness Encryption for NP

Note: MI-ABE for polynomial arity and NC¹ policies ⇒ Witness Encryption for NP

We consider settings that circumvent this implication.

- 1) Weaker Policies (→ cannot verify NP relation)
 - MC-ABE for NC⁰ policies
 - MC-ABE for constant-threshold policies

Note: MI-ABE for polynomial arity and NC¹ policies ⇒ Witness Encryption for NP

We consider settings that circumvent this implication.

- 1) Weaker Policies (→ cannot verify NP relation)
 - MC-ABE for NC⁰ policies
 - MC-ABE for constant-threshold policies
- 2) Short Inputs (→ WE with exp-size ciphertexts)
 - MC-ABE for NC 1 for parameters s.t. $|x_1|+\cdots+|x_n|=O(\log\lambda)$

Note: MI-ABE for polynomial arity and NC¹ policies ⇒ Witness Encryption for NP

We consider settings that circumvent this implication.

- 1) Weaker Policies (→ cannot verify NP relation)
 - MC-ABE for NC⁰ policies
 - MC-ABE for constant-threshold policies
- 2) Short Inputs (→ WE with exp-size ciphertexts)
 - MC-ABE for NC 1 for parameters s.t. $|x_1|+\cdots+|x_n|=O(\log\lambda)$
- 3) Weaker Security Model (→ MC-ABE with OT labels ≠ MI-ABE)
 - MC-ABE for NC¹ under one-time label restriction

What does already exist?

- 1) Direct Construction of MI-PE ([EC:FFMV23])
 - conjunctions of bounded-depth circuits
 - (poly arity and no corruptions) or (constant arity and corruptions)
 - no collusions!
- 2) Generic Compiler MI-ABE + Lockable Obfuscation ⇒ MI-PE ([C:AYY22])
 - only arity 2 (or constant arity and weak security)
 - no corruptions

What does already exist?

- 1) Direct Construction of MI-PE ([EC:FFMV23])
 - conjunctions of bounded-depth circuits
 - (poly arity and no corruptions) or (constant arity and corruptions)
 - no collusions!
- 2) Generic Compiler MI-ABE + Lockable Obfuscation ⇒ MI-PE ([C:AYY22])
 - only arity 2 (or constant arity and weak security)
 - no corruptions

This Work — A New Generic Compiler

Constant-Arity MC-ABE + Lockable Obfuscation ⇒ Constant-Arity MC-PE

Framework for Pairing-based KP-ABE

Linear Secret Sharing Scheme

$$\mathsf{Share}(s,f) \to (s_1^0,\dots,s_n^0,s_1^1,\dots,s_n^1)$$
 if $f(x_1,\dots,x_n)=1$, then
$$\mathsf{FindCoeff}(x_1,\dots,x_n,f) \to (\omega_1,\dots,\omega_n), \;\; \text{s.t. } \sum_{i\in[n]} \omega_i \cdot s_i^{x_i}=s$$
 if $f(x_1,\dots,x_n)=0$, then $(s_1^{x_1},\dots,s_n^{x_n}) \approx \$$

Framework for Pairing-based KP-ABE

$$\mathsf{ct}_{\mathbf{x}} \qquad \mathsf{ict}_{0}([r,\mu]_{1}), \{\mathsf{ict}_{i,x_{i}}([r]_{1})\}_{i \in [n]} \\ \mathsf{dk}_{f} \qquad \mathsf{idk}_{0}([s,1]_{2}), \{\mathsf{idk}_{i,b}([s_{i}^{b}]_{2})\}_{i \in [n]}^{b \in \{0,1\}} \\ \mathsf{idk}_{f} \qquad \mathsf{idk}_{0}([s,1]_{2}), \{\mathsf{idk}_{i,b}([s_{i}^{b}]_{2})\}_{i \in [n]}^{b \in \{0,1\}} \\ \mathsf{dk}_{f} \qquad \mathsf{idk}_{f} \qquad \mathsf{idk}_{f}([s,1]_{2}), \{\mathsf{idk}_{i,b}([s_{i}^{b}]_{2})\}_{i \in [n]}^{b \in \{0,1\}} \\ \mathsf{idk}_{f}([s,1]_{2}), \{\mathsf{idk}_{f}([s,1]_{2}), \{\mathsf{idk}_{f}([s,1]_{2}),$$

Framework for Pairing-based KP-ABE

How to distribute this?

... using random oracles, i.e., $[r]_1 = H(lab)$?

→ only one-time labels :(

if
$$f(x_1,\ldots,x_n)=1$$
, the FindCoeff $(x_1,\ldots,x_n,f) o (\omega_1,\ldots,\omega_n)$, s.t. $\sum_{i\in[n]}\omega_i\cdot s_i^{x_i}=s$ if $f(x_1,\ldots,x_n)=0$, then $(s_1^{x_1},\ldots,s_n^{x_n})pprox\$$

Inner-Product Functional Encryption

Identity-Based Encryption

Which $(x_2,\ldots,x_n)\in\{0,1\}^{n-1}$ do we need?

 all → NC¹ policies for O(log λ) inputs

Identity-Based Encryption

Which $(x_2,\ldots,x_n)\in\{0,1\}^{n-1}$ do we need?

- all → NC¹ policies for O(log λ) inputs
- constant-size subsets → NC⁰ policies and constant-threshold policies

From MC-ABE to MC-PE using Lockable Obfuscation

From MC-ABE to MC-PE using Lockable Obfuscation

From MC-ABE to MC-PE using Lockable Obfuscation

From MC-ABE to MC-PE using Lockable Obfuscation)

"Communication" between the obfuscated circuits?

 $Enc(sk_1, lab)$ ct

Security against corruptions?

- use n independent MC-ABE instances with rotated slots
- nested recursion to check global authorization in each slot

Conclusion

- definition of MC-ABE and MC-PE
- construction of MC-ABE for global policies from SXDH
- generic compiler for constant-arity MC-ABE ⇒ constant-arity MC-PE from LWE
- previous to this work, these results were unknown even for MI-ABE

Conclusion

- definition of MC-ABF and MC-PF
- construction of MC-ABE for global policies from SXDH
- generic compiler for constant-arity MC-ABE ⇒ constant-arity MC-PE from LWE
- previous to this work, these results were unknown even for MI-ABE

Thank you for your attention!

ia.cr/2024/1945